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ABSTRACT 

In the first chapter the performance of two of the long memory tests, the Modified 

Rescaled Range Test and Geweke and Porter-Hudak Test for persistence in small samples is 

examined using Monte-Carlo methods. Some possible candidates for persistence in volatility are 

Autoregressive Conditional Heteroskedasticity (ARCH). Markov Regime Switching ARCH, and 

long memory. The long memory series are simulated through a Semi-Markov process with Pareto 

waiting times and lognormal realizations. The persistence in volatility arising from transition 

waiting probabilities for a Markov Regime Switching process, and from the tail index of the 

waiting time distribution for the Semi-Markov process is established through simulations with 

different parameter values. There is evidence that persistence in a regime switching process is 

closely linked to state transition probabilities and waiting times. 

The second chapter re-examines what structural vector autoregressive modeling of real 

exchange rates with differenced variables tells us about interesting macroeconomic questions. 

Using quarterly data from G-7 countries in the post Bretton-Woods period, the evidence suggests 

that shock identification is not an easy process in a Blanchard and Quah decomposition 

framework with long run restrictions. Confidence bands do not find significant impulse responses 

and the signs of the estimated impulse responses are very sensitive to the lag selection criteria 

adopted. Possible cointegration effects seem to be the main driving force behind the 

unsatisfactory performance of the structural approach. 

Chapter three extends the structural vector autoregression model by incorporating 

cointegration effects. Using the method of Warne (1993), in a simple four-variable VAR 

characterized by cointegration, the response of real exchange rates to various economic shocks 

are investigated with economically plausible long-run restrictions. The long-run relations and 

driving stochastic trends of the real exchange rate between United States and other G-7 countries 

are analyzed in a structural cointegrated framework. Productivity shocks depreciate the real 

exchange rate and the perverse sign effect of supply shock is corrected for most countries in the 

sample. More significant impulse responses are observed through confidence intervals. The 

structural vector error correction decompositions are also found to be not robust to estimating 

with different lag lengths owing to additional cointegration effects. 
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GENERAL INTRODUCTION 

Introduction: 

Returns in financial markets display persistent features of volatility suggestive of a time-

dependent variance process. Various approaches have been advanced to model time-dependent 

variances. The basic building block of time-varying variance processes is the autoregressive 

conditionally heteroskedastic (ARCH) model with an AR(1) process in variance. However. 

ARCH is a short memory process and has failed to explain the overly persistent, or 'long 

memory' features in observed in high frequency financial data. One way to add additional 

persistence to simple ARCH is to introduce more than one regime driven by different 

autoregressive parameters. An ARCH process with two separate high and low volatility regimes 

can be characterized by Markov Regime Switching ARCH (MRSARCH). The number of 

countable regimes can be increased by introducing a Semi-Markov process where the process 

wanders across different regimes with the jump times from one regime to another determined by 

a waiting time distribution. Such a process exhibits long memory features reminiscent of financial 

market data. The first chapter takes a close look at how the persistence of a process is related to 

transition probabilities or waiting times, and whether the commonly used long memory tests. 

Modified Rescaled Range (MRR) test, and Geweke-Porter-Hudak test (GPH) can detect long 

memory behaviour. 

Chapters 2 and 3 are closely related in the sense that they both examine the shock 

identification in VAR systems with and without the effect of cointegration among the used 

variables in the VAR system. Real exchange rates is one of the most commonly investigated 

variables in international finance literature and economists have shown great interest in 

identifying the sources of real exchange rate fluctuations. The results of such an endeavor may 

prove to be quite beneficial, in particular for understanding deviations from purchasing power 

parity and to appraise competing equilibrium theories about the real exchange rate. Structural 

Vector Autoregressions (SVARs) have found common use for this enterprise. Starting with 

simple models identified by contemporaneous restrictions on various shocks in the VAR system, 

economists have modified the VARs with long-run restrictions to arrive at more plausible 

identification schemes. SVAR analysis has often been burdened by cointegration relationships 

and such co-movements have been either ignored or not modeled in the literature. This has 
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created complications for standard S VAR analysis and the last two chapters dwell on the 

identified problems and offer a solution through a structural vector error correction model. 

Organization of Dissertation 

The dissertation has two distinct objectives and three separate chapters. The first chapter 

carries out a Monte-Carlo simulation analysis to establish the relationship between regime 

switching behaviour and long memory features using two long memory tests. My objective is to 

see how persistence can be created in a regime switching process and whether that can be 

identified through tests both in time and frequency domain. The remaining two chapters do not 

share any common features with the first chapter of the dissertation. Chapters two and three set 

out with the objective of identifying problems associated with standard applications of structural 

vector autoregressions (SVARs) in shock identification in VAR setting with real exchange rates. 

My emphasis is on the floating exchange rate period and the sample I use is very similar to the 

data set in Clarida and Gali (1995, henceforth CG). CG were the first to use long-run restrictions 

in a structural VAR system. Later disciples of SVAR decompositions have followed through their 

steps but commonly used differenced variables in the VAR systems. In the second chapter I take 

the CG model to a slightly different data with an extended set of countries and identify serious 

problems with lag selection and possible cointegration effects. In the final chapter of the 

dissertation and I propose a structural vector error correction model that incorporates 

cointegration and use the levels of the variables in the system. I compare results from both 

approaches and argue for the additional merits of using a more advanced technique for structural 

shock identification for real exchange rates for the G-7 countries. 
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CHAPTER 1 
REGIME SWITCHING AND PERSISTENCE IN VOLATILITY: 

A MONTE-CARLO INVESTIGATION 

1. Introduction 

In conventional econometric models, the variance of the error term is assumed to be constant. 

However, many economic time series and asset values exhibit phases of relative tranquility 

followed by periods of high volatility. For a series exhibiting volatility, the unconditional 

variance may be constant even though the variance during some periods is unusually high giving 

rise to conditional heteroskedasticity. Financial variables such as stock returns can be quite easily 

modeled by martingale difference sequences, as such models are justified by efficient financial 

markets. A martingale difference sequence is characterized by constant unconditional variance, 

and is serially uncorrected. Even though financial series appear to be uncorrected, they cannot 

be assumed independent and identically distributed. Melino and Tumbull ( 1990) and Tauchen 

and Pitts ( 1983) have shown that the variance of such series tends to be time dependent, in the 

sense that large and small values appear in clusters, suggestive of a time-varying variance 

process. 

Several different approaches have been proposed to model time-dependent variances. Engle 

( 1982) uses an autoregressive conditionally heteroskedastic model. The conditional variance of a 

series at timer depends on its past values through an autoregressive process. Bollerslev (1986) 

generalized Engle's model to include autoregressive moving average (ARMA) processes, as 

"Generalized AutoRegressive Conditional Heteroskedasdicity" (GARCH). 

G ARCH applications involving high frequency financial data have indicated the presence of 

a unit root in the univariate representation for the volatility. (Lamoureux. and Lastrapes, 1990) 

Financial market volatility displays persistent features as observed by very slowly decaying 

autocorrelations for absolute and squared returns. GARCH is a short memory model, and thus one 

way to mimic such a strong observed persistence is by using or approximating a unit root. Engle 

and Bollerslev ( 1986) introduced the integrated GARCH (I-GARCH) process, in which shocks to 

variance do not decay over time and the current information remains important for the forecasts 

of the conditional variances for all future horizons. Integration in variance is analogous to a unit 

root in the mean of a stochastic process. Lamoureux and Lastrapes ( 1990) pointed out that the 

potential problem with I-GARCH is that it lacks theoretical motivation. However, some 

researchers have not hastened to suggest a unit root in the variance structure. In order to avoid a 



www.manaraa.com

4 

possible criticism on the assumption of a drift in variance, it has been suggested that the variance 

can be characterized by a long memory process. Taylor (1986) realized that the absolute values of 

stock returns tended to have very slowly decaying autocorrelations. Baillie, Bollerslev and 

Mikkelsen (1996) considered a long memory process in the variance known as "Fractionally 

Integrated Generalized Autoregressive Conditional Heteroskedasticity" (FIGARCH). This 

process implies a slow hyperbolic rate of decay for autocorrelations of squared innovations and 

persistent impulse response weights. Therefore, long memory stands as a possible candidate to 

explain persistence in volatility of a series. 

One needs to be cautious about taking general evidence of I-GARCH or strong persistence at 

face value. Regime switching may give rise to persistence that is observationally equivalent to a 

unit root. The strong serial dependence manifested in the evolution of volatility may be an artifact 

of an exogenous driving variable. Lamoureux and Lastrapes (1990) investigated the possibility 

that the appearance of high persistence in variance in daily stock return data is due to time-

varying GARCH parameters. For example I-GARCH might be due to instability in the 

unconditional variance. Such a possibility was confirmed by Lastrapes (1989). who showed that 

exchange-rate volatility, as measured by ARCH, depends on monetary policy regimes. Different 

targeting policies on the pan of Federal Reserve (FED) incorporates changing volatilities to the 

evolution of exchange rate and consequently to the stock market. Such shifts bias upward 

GARCH estimates of persistence in variance. 

This paper will investigate such a possibility using nondeterministic shifts as opposed to 

Lamoureux and Lastrapes (henceforth LL) through a two-state Markov chain. LL found in their 

1990 study that allowing for the presence of deterministic shifts in the conditional variance 

intercept in GARCH produces substantially lower estimates of the persistence parameters. 

Hamilton (1988) tried to model the effects of dramatic shocks and political events in financial 

asset prices through a Markov Switching Regime. Hamilton also documented the success of the 

switching regime model for short-term interest rates. 

The purpose of this study is to try to establish the size and the power of the GPH and MRR 

tests on three different data generating processes which include the possibility of long memory in 

the observed persistence in variance. Monte Carlo simulations will generate standard ARCH 

processes, ARCH processes with regime switching through a Markov Chain (henceforth referred 

to as MRSARCH) and long memory series as possible candidates for the persistence in variance. 

Cheung (1993) provides tables regarding the size of MRR and GPH tests for long memory and 
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first order ARCH processes with various autoregressive coefficients. Cheung's study comprises 

of long memory processes with a support on the real line, whereas this paper deals only with long 

memory processes with a positive support in their distribution. This study will demonstrate the 

size of GPH and MRR tests for switching regimes. Different parameterizations of MRSARCH 

will provide us with valuable information as to the relationship of the persistence in volatility to 

state transition probabilities. The long memory process will be generated through regime 

switching following Liu (2000). Instead of modeling regime switching through a discrete state 

Markov chain as in Hamilton and Susmel (1994). we model regime switching as a transition 

across i.i.d. regimes with the duration distribution for each regime defined as a heavy-tailed 

Pareto distribution. The simulations confirm Liu (2000) that the long memory behavior is closely 

related to the tail index of the duration distribution and also that strong persistence to stay in a 

given state in a MRSARCH process leads to more rejection of MRR and GPH tests. 

The paper is organized as follows: Section 2 surveys the literature for long memory and 

provides a theoretical background both in time and frequency domain. Section 3 deals with the 

general features of standard ARCH and Markov Regime Switching ARCH and establishes how a 

switching process results in long memory and thus persistence in volatility. Section 4 lays out the 

algorithm to generate the three different processes; ARCH, MRSARCH. and long memory. 

Section 5 lays out the procedure to apply MRR and GPH tests. Section 6 presents the simulation 

results and also includes figures. Section 7 concludes. The Appendix elaborates on the derivations 

used in simulations and throughout the sections. 

2. Long memory in Time and Frequency Domain 

Long memory time series are mainly characterized by slowly decaying autocorrelations. In 

the usual autoregressive moving average (ARMA) representation of a time series the 

autocorrelations die exponentially, whereas long memory processes display persistence in their 

autocovariance functions exhibiting a hyperbolic decay. Long memory, defined by properties of 

the correlogram and spectrum, is concerned essentially with the linear properties of a process. 

There are a number of other processes that can also mimic long memory series, including 

generalized fractionally integrated models arising from aggregation, time-changing coefficient 

models, and possibly nonlinear models as discussed by Granger and Hallman (1991) and Ermini 

and Granger ( 1993). 
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Long memory in frequency domain can also be characterized with an infinite spectrum at 

zero frequency. The failure of standard autoregressive integrated moving average (ARIMA) 

models to represent the spectral density at low frequencies adequately suggests that many-step-

ahead forecasts obtained using those models could be inferior to those produced by models that 

permit unbounded spectral densities at frequency zero and autocorrelation functions that do not 

decay exponentially. The long memory model proposed independently by Granger and Joyeux 

(1980) and Hosting (1981) can be motivated by the observation that some time series appear to 

have unbounded spectral densities at the frequency zero, but the spectral densities of first 

differences appear to vanish at the zero frequency. 

In this paper, following Hsu (1997) and Liu (2000). a long memory process will be generated 

through a Semi-Markov process. The long memory process will display the same autocorrelation 

behavior like a fractionally integrated autoregressive moving average (ARFIMA) series as the 

lags between the observations go to infinity. ARFIMA processes can be regarded as a halfway 

between integrated of order zero. /(0) and integrated of order one. /( 1) paradigms. The rest of this 

section will elaborate on the properties of ARFIMA processes in time and frequency domain. 

2.1. Time Domain Approach 

The fractionally integrated long-memory process proposed by Granger and Joyeux (1980) 

and Hosting ( 1981 ) can be described as: 

where L k x ;  = for integer k  , 4>(L)and 0(6) are polynomials in L  with no common roots. 

Such a representation has the potential of capturing both the long-term persistence and short-

term dynamics at the same time. If d <1/2 and the roots of the polynomials <P(L) and 0(L)are 

outside the unit circle, then the time series is stationary and has the usual one-sided MA 

representation. If </>l/2, then the series is nonstationary and when =1, we have the usual 

unit-root process. 

A process {>•,} is called a simple fractionally integrated time-series if we have 

(1 -L Y  (P(L)y, = @ ( L ) e 1 ,  ; £ ,  -  u x i ( 0 .  < r z  )  (1) 

( 1  -  L ) d  y ,  =  £ , ,  £ ,  -  i . i . d ( 0 . a z  )  

When d  <1/2 series is stationary and v, has the Moving average (MA) expression 

y, =(i-Z.)-"f, 

(2) 

(3) 
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The autocorrelation function of {y,} is 

r a - j p r w + k )  _ m - d )  M_, 

n</)r( i-£/+ife)  n</)  

as t gets large, where F represents the usual gamma function, and the approximation follows 

f r o m  S h e p p a r d ' s  f o r m u l a ,  t h a t  f o r  l a r g e  k  .  V ( k + a ) / F ( k  +  b )  i s  w e l l  a p p r o x i m a t e d  b y  k " ~ b .  

r( a )  =  ] t a - l e - ' d t ,  a > 0  (5) 
o 

2.2. Frequency Domain Analysis 

It has become standard practice for time series analysts to consider differencing their time 

series to achieve stationarity. By this, they mean one differences to achieve a form of series that 

can be identified as an Autoregressive Moving Average (ARMA) model. If a series does need 

differencing to achieve this, it means the undifferenced series has infinite variance. When a series 

is differenced, one removes the low frequency components. Suppose y, has spectrum fY(w) and 

(I -  L ) d  x ,  = y,. The lowercase d  is the differencing parameter. Then 

f y ( w ) = \ l - e - K \ 2 d  f x ( w )  (6) 

The power spectrum of a fractional white noise (1 - L ) d  x ,  =  £ , - , £ , -  i . i . d .  (0. <T: ). will be 

2 2 
f x  (  w ) = )  1  - e = [2 sin( w  /  2 ) } ' l d  — = civ . ce/? as w -*0 (7) 

- x  I n  

Therefore the spectral density goes to infinity for d > 0 at frequency zero. 

3. ARCH Processes and Regime Switching 

3.1. Standard ARCH Models 

The simplest example from the class of conditionally heteroskedastic models proposed by 

Engle ( 1982) is 

£, = v, Vao +ai£t-i • v, ~iid JV(O.l) (8) 

Cov(v,,f$ ) = 0 Vs. t .  a 0  >0 . 0<jûr, |<1 

The variance of ec conditioned on the past history of f,_1.fr_2.f:_3....is defined as 

£(f,2|fr_1.ft_2....)=<z0 +a,£,2_, (9) 
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The conditional variance follows a first order autoregressive process and is denoted by 

ARCH(l). Moreover, the squared series f,: follow an AR(1) process with the autocorrelation 

structure given 

p ( k )  =  a j ;  ; * = 1.2,3.... (10) 

In other words an ARCH process is white noise but not independent and identically 

distributed as seen by the nonlinear relationship of the error terms via second moments. 

3.2. Regime Switching 

Lastrapes (1989) considers possible shifts in the constant term a0 given the nature of the 

world economy. Shifts cause changes in the unconditional variance and thus ARCH process will 

be nonstationary. Different regimes characterize the different shifts in the operating procedure of 

the Federal Reserve (FED). The estimation results in reduced values for or,. Lastrapes' 

estimations support Diebold's view (1986) that innovations to volatility may exhibit more 

persistence than actually exists when nonstationarities in the variance process are not taken into 

account. Allowing for regime shifts in estimating conditional variance can have quantitatively 

significant effects on persistence of conditional volatility. Therefore, Lastrapes argues that the 

possibility of changes in unconditional variance should be considered when specifying ARCH 

models. 

Hamilton (1989) documented the apparent success of the switching-regime model to explain 

the mean growth rate of nonstationary time series. For each nonstationary series. Hamilton 

assumes that at any point in time the economy might be either in a fast or slow growth phase, 

with the switch between the two governed by the outcome of a Markov process. 

Hamilton and Susmel (henceforth HS) (1994) introduce a parsimonious representation for 

Markov Regime Switching ARCH (henceforth MRSARCH). Without incorporating the 

structural shifts, HS find extremely persistent movements in stock price volatility. However, such 

persistence turns out to be hard to reconcile with the poor forecasting performance of the ARCH 

process. Following Perron's observation (1989) that changes in regime may give spurious 

impression of unit roots in characterization of the level of a series. HS explore a specification in 

which the parameters of an ARCH process occasionally change. Their specification treats the 

parameter changes as a function of the state as in Cai (1994). HS show that most of the 
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persistence in stock price volatility can be attributed to the persistence of low, moderate and high 

volatility regimes, which typically last for several years. 

3 J. Regime Switching and Long Memory 

Long memory processes were mentioned as a possible candidate for persistence in volatility. 

One might wonder at this point whether there exists a possible relationship between regime 

switching models and long memory phenomena. Hsu (1997) showed that a Semi-Markov process 

with a heavy tailed distribution for the waiting times acts like a long memory in the covariance 

structure as the lags between observations go to infinity. The positive support condition for the 

original series in our simulations is crucial in the sense that the squares of the error terms are 

positive, and thus positive support is needed for the values observed between the waiting times. 

Liu (2000) states the conditions under which regime switching can exhibit long memory. Liu 

argues that the heavy tail interarrivai distribution is the only distribution that gives rise to long 

memory (pp 143). A fair question may be asked as regards the triggering mechanism of regime 

switches. According to Liu (2000), a regime may very well be related to certain latent state 

variables. In the context of financial economics, the regime switching may be due to monetary 

policy, in the case of interest rates; or correspond to market uncertainty levels as laid out by 

various major market news, in the case of stock market volatility. When an economic variable 

hits its threshold, it may trigger a jump in regimes. Liu (2000) models stock market volatility 

through regime switching and argues for a better fit to the dynamics of the variance process. Hsu 

( 1997) provides a better exposition of the analytics of the regime switching process. 

Hsu sets out with a couple of definitions and theorems to prove her case. (Hsu, pp. 11-13). 

I follow Hsu's notation in the definitions below: 

Definition 3.3.1: Let F and G be cumulative distribution functions (cdfs) with positive 

support. A sequence {r„} is said to be a renewal sequence if r„ = r„_, + Tn and r0 = 0. where 

{T, : i > 2} is an i.i.d. sequence of random variables with cumulative distribution function (cdf) F 

and 7\ has the cdf G and is independent of {r, : / > 2}. 

Definition 3.3.2: A counting process N ( t )  with respect to a renewal sequence {rn } is defined, 

) = Z 1|(U|(r*) = maxjne Z' :r„ </} (11) 
n=i 

which is the number of transitions in [O.t]. 
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Definition 3.3.3: Let {vv„ : ne ZT} be a Markov process and {rn :ne Z~} be a sequence of 

independent, nonnegative random variables such that the distribution of Tn depends only on 

Let {S„}be the partial sums of the process {7n}; that is 

sn=ir, (12) 
1=1 

Define a ,  = w n  for S n  < t < S n + l .  Then the process {or, : t e  /?"} is called a Semi-Markov 

process with states{*•„}and sojourn times 

Hsu (1997) considers a process {a,}defined by a, =wN(n. where }is Markovian and 

N(t) is a counting process. Then the process {or,} is a special case of a Semi-Markov process. 

Hsu assumes that {w*„} is strictly stationary, the mean of the distribution F exists and 

I  
G(t)=M'lla-F(x))d.x (13) 

o 

Definition 3.3.4: The forward recurrence time 6, at time r, which is the waiting time from 

time t to the next transition, is given by: 

B, =r.vuH-r (14) 

Resnick ( 1994) provides a proof for the argument that B. - G(r) V: > 0. 

Suppose F is a Pareto distribution with the density function 

R X P  
/(•*> =-p5rW}; -t„ >0,/?€ (1,2) (15) 

The value of P characterizes the tail behavior of the sojourn distribution. The mean of the 

Pareto distribution is given as ^C° , and the variance as ^9 . Therefore the mean 
£ - 1  ( y g - l ) - ( y 9 - 2 )  

does not exist for f î  < 1. It is heavy tailed for < 2 .  Then, one can choose 0  e (1,2) for modeling 

long memory processes. Hsu (1997) obtained the distribution of the forward recurrence time G 

by computing 

(xQ ItY\t>xQ 1 
1  -  F  ( t )  =  j  f {x)dx = (16) 

1 ; f < _r0 J 
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C(r) = A"lJ{l-/r(.r)}tir = |1 U°/r)^ ;r>'tol (17) 
o |(A0) (£-D* ;r<.r0J 

Then it is easy for us to derive the covariance structure of the Semi-Markov process {or,} : 

Cov(a, ,a„h ) = E(a,a,+h ) - E(a, )E(a„h ) 
-t ( lo) 

=  I  N ( t ) ,  N ( t  +  h ) ] ]  - j u ~  

Since wn 's are i.i.d. for neZ', 

C o v ( a , . a l T h )  =  ( M z  - M z ) E ( l [ N ( n m N u . h ) ] )  (19) 

where l{,V(/)=Ar(/»/I>} = I i f  N ( t )  = N { t  +  h ) , and 0 otherwise, and m z stands for the second moment 

of the distribution of wn. Then. 

C o v ( a , , a , „ h )  =  ( . M z - M 2 ) P [ N ( i )  =  N ( t  +  h ) \  

= (Mz -Unpin, >h] = (Mz -//2)(l-C(Zz)) (20) 

Un z-^)p-\xjh)p~ l  ; / i>.v0  1 

\ ( M z  "/v2)(l-(>at0r'(/3-l)/z) ;/z<.r0J 

The limiting behavior of the covariance function of the Semi-Markov process will be 

tin,», Coy(a
h;:^} cs R (2„ 

A simple fractionally integrated long memory process F has the limiting covariance 

structure: 

lim'— jÊ- = c'csR (22) 

Then all one needs to do in order to create a long memory process with positive support is to 

generate i.i.d. random variables or,'s from a random number generator with a positive support, 

i.e. lognormal distribution and embed it into a renewal process where the interarrivai times for the 

process are characterized by a heavy tailed distribution again with positive support, i.e. Pareto 

distribution. The relationship between d and fi can be derived simply as: 

2 d - 1  =  1 - 0  = >  0  =  2 ( l - d )  (23) 

Then, one can calibrate the autocorrelation function of the long memory process created by 

regime switching to another fractionally integrated long memory process. The relationship in 

equation (23) accords with Lemma 1.1. in Liu (2000). Our illustration here only serves as a 

concrete example of Liu's arguments. 
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A Possible realization for the Semi-Markovian process for fifty observations is in Fig. 1. 

Each realization is from a lognormal (^i = 0. <72 = 5) distribution and the waiting times are 

Pareto(.c0 =0.99./? = 1.2) and the differencing parameter d of the ARFIMA process the 

simulations were calibrated to is 0.4. 

FIG.l SEMI-MARKOV PROCESS (log normal(0£), Parero(Q.99,l.2)) 

Realization with a sample size of 50 

I 

i .j 00006000000000000000000 

OOO oo 

^ooooc OOO j 

4. Data Generation and Calibration 

The simulations of standard ARCH. Markov Regime Switching ARCH (MRSARCH) and 

Long Memory processes are calibrated to have parameter values to equalize not only 

unconditional variances of the three processes but also the sum of the first five autocorrelations of 

the squared series. In order to be able to compare the sole effect of the regime switching on long 

memory tests, the parameters for the three processes were chosen to have the same behavior in 

levels and autocorrelation structures. That was crucial to extract the impact of regime switching 

for ARCH and MRS ARCH processes. The sum of the first five autocorrelations rather than the 

first order autocorrelations was preferred on ad hoc basis to account for the differing decay 

factors for long memory and short memory processes. 

4.1. Standard ARCH 

Let e, = u t  -Jh^~. u t~U.d.N(OA) and £(ff
: | £,_z ....)= aQ  +arl£,iI where | or, |< I and 

a0 > 0. and N is the normal distribution with the necessary parameters. In the simulations or, will 
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be chosen in accordance with the selection of the parameter d , and a0  will be chosen to calibrate 

unconditional variances. The maximum first order autocorrelation that can be obtained for the 

long memory process through regime switching is 0.33. ARCH process with first order, ARCH 

(1). will be generated recursively, assuming £0 =0. MRSARCH and ARCH(l) processes will be 

generated with sample sizes of 500, 750 and 1000 with 1000 repetitions. The initial 200 values 

for each repetition in the Monte Carlo simulations will be discarded to avoid a possible adverse 

effect of the initial value. 

4.2. Markov Regime Switching ARCH Model 

The Markov Chain in the simulations has a finite number of states, and to make it simple I 

choose 2 states. The states 1 and 2, and the stationary transition probabilities for the Markov 

Chain are characterized by the transition matrix 

P- [ ' M (24, 
1 -q q 

where p is the transition probability from state I unto itself, and similarly, q is the transition 

probability from state 2 unto itself, (1 -q), and (1- p) are transition probabilities between states. 

The transition matrix P has all its rows summing to one as expected from a Markov Chain. 

The vector of ergodic probabilities, the unconditional probability of the system is at steady state. 

is 

(1 -<7)/(2- p  —  q )  

( 1  -  p ) / ( 2  -  p  -  q )  

where the first row refers to the ergodic probability for the first state and the last row to the 

second state. The ergodic probabilities will be used to determine from which state the regime 

switching process starts after one fixes the values for p and q. I generate a uniform random 

[ — q 
variable Y - (/[0.1]. and if Y is greater than , then the system starts at state 2. and at 

2 - p - q  

state 1 if the reverse holds. I choose the p .  q  pairs as (0.3,0.3), (0.5,0.5), (0.7.0.7), (0.9,0.9) to 

examine how the state transition probabilities affect the persistence in a MRSARCH process. I try 

to keep the p, q parameters the same, as other parameterizations have not proved to be very 

fruitful for interpretation. The ARCH (I) processes for each state are given as: 

(25) 



www.manaraa.com

14 

e,(i) = u, ; u, - iid N{0,1), «e {l,2}. (26) 

,(»: c-(-)- _/yO , ^.aj-oz 
£f — "o "htirl £:-l • ti ~u0 Ul tt-1 

The superscripts in parentheses represent the state. ar0 > 0, or, E (0.1), and 

(aô2),al2> )=m(aol>,af"), me Rr. The ARCH (1) process for the second state has parameter 

structure just a constant multiple of the first state. In order to represent the second state as the 

high variance state, m is 2, and aQ and ax are chosen to equate the unconditional variance and 

the sum of first five autocorrelations. In the simulations the error term at time zero will be 

assumed to be zero and the initial 200 observations in the simulation will be discarded. In order to 

highlight the issue of regime switching ARCH, it is worth looking at how the process is simulated 

on a small example: 

Suppose we are going to simulate n observations through MRSARCH. Let the state vector 

for n observations be: [I 1 2 2 2 2..1 1] (lxfl). Then the first three simulated values are going to be: 

f, = u i y J a {
0

u  + a [ u e l , e 2  = u z ^ a l
0

u  +or1",£f, = u ^ a l
Q

2 )  (27) 

This algorithm will allow for a switch of the volatility process for the whole series. 

43. Simulating a Semi-Markov Process and Long Memory 

We need to construct a long memory process with a positive support to make the comparison 

possible with ARCH and MRSARCH. Long memory processes in general have support on the 

real line. However, variance is always positive and therefore the series needs to have positive 

values. I use a renewal process with a lognormal distribution to generate a positive valued long 

memory series. Pareto distribution for the waiting times can be simulated easily from a uniform 

random number generator by using the inverse cdf method: 

Generate Z -  f/[0,l], then P = ~ P a r e t°(xo » P) (28) 

At each renewal I generate a lognormal random variable with parameters (/z.<r2) = (0.5) and 

the series has that value until the new renewal. The density function for a lognormal random 

variable is: 

, I g-Cogjc-Ai riZa1 

f ( x  | /i, a 2  ) = — . 0 < x < oo, -°o < ft <oo, <r>0 (29) 
V2no x 
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The waiting time the process stays at any lognormal variable is denoted by |_Pj. P is a 

random variable with a Pareto distribution with parameters (jc0, fi) = (1,2(1—d)), d is the 

fractional differencing parameter for the ARFIMA process. The value for /? is chosen to equate 

the asymptotic autocorrelation functions for a regime switching process and an ARFIMA process 

with differencing parameter, d . The function |_...J stands for the smallest integer value greater 

than or equal to P . The process generated will be: 

et = Vv-v«> ' ~ iid N(O'D ' Cov(ut, V V(n ) = 0 (30) 

v, - log normal (//.<?'), and N ( i )  is a counting process with Pareto( x o , 0 )  interarrivai 

times. The autocorrelation function of vV|f) process will carry the features of an ARFIMA 

process with differencing parameter d  . The differencing parameter values that will be examined 

are 0.1.0.3,0.4 and 0.49. A higher d value will result in more persistence in variance. 

4.4. Calibration 

This section will calibrate the process parameters so that each of the three processes has the 

same unconditional variance and the same sum of the first five autocorrelations for the squared 

series. All the derivations for the corresponding variances and autocorrelations are derived in the 

Appendix. 

I set the differencing parameter for the ARFIMA process a s  d e  {0.1.0.3.0.4.0.49} which 

translates into /? e {l.8.1.4.1.2.1.02}. The value for or, was calculated to be the element of the set 

{0.323.0.457,0.54.0.64}. which translates into a,(1> 6 {0.17.0.25.0.261,0.2865}. With four different 

values for d . four (p.q) pairs and three different sample sizes of 500,750 and 1000. the paper 

will analyze 48 different cases to display possible effects of each parameter and the interplay 

between them in Monte Carlo simulations. 

The values for aQ and org0 for /'€ {1.2} are adjusted accordingly to equate the variance and 

the autocorrelations for each of the three processes. In all simulations of long memory through the 

Semi-Markov process. I keep the .t0 parameter for the Pareto distribution equal to 0.99 to 

maximize the first order autocorrelation of the long memory process. One other aspect of the 

simulations is that for each parameterization I use the same iid noise sequence. 
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5. Testing through MRR and GPH 

We first illustrate the testing procedures used to identify long memory series. The first part is 

the Modified Rescaled Range (MRR) statistic distinguishing long memory from short memory, 

and the second part makes use of the Geweke and Porter-Hudak (GPH) test for long memory in 

the frequency domain to identify the significance of the differencing parameter, d . 

5.1. A Robust Nonparametric Test for Long Memory 

To detect long-range or strong dependence and also to take into account possible short 

memory we use Lo (1991)'s " Modified Rescaled Range (MRR)" test statistic. This corrects for 

short-term memory without taking too strong a position on what form it takes. Its limiting 

distribution is invariant to many forms of short-range dependence, and yet it is still sensitive to 

the presence of long-range dependence. The modified R/S statistic is defined as 

Q n = ^  
à n { q )  

k 

maxl£i5„ X(-(, min,5t£„ £ U, - -t„ ) 
7=1 7=1 

where 

&2n = + 2£ W j  ( q ) Y ,  ; w; (<7) = l — 
7=1 <7 + 1 

(31) 

(32) 

& X  - * « ) 2 

n ; = [  

and yj is the sample autocovariance estimator. According to the data dependent formula by 

Andrews (1991), the truncation lag must be chosen following 

-  x i  / . i f  -  .  x  3 
3 n y/3 

f lp ) 
y { l - p - j  

(33) 

The [.] operator denotes the greatest integer less than or equal to kn, and p is the estimator 

for the first order autocorrelation. There is no clear choice of q in small samples. Andrews 

( 1991) proves in a theorem (p. 1291) that A=Qn V  .  
Vu 

The distribution function is given explicitly by Kennedy ( 1976) and Siddiqi ( 1976) 

Fv(v) = l + 2 j£ (1-4 k z v z )  exp(-2 k  2v" ) (34) 
t=i 
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The null hypothesis for MRR test statistic is that the series has short memory. When the test 

statistic exceeds the chosen critical value, then it is concluded that the series exhibits long 

memory. 

5.2. Estimation for Long Memory in Frequency Domain 

Geweke and Porter-Hudak (1983) suggested a semi-parametric estimator of the fractional 

differencing parameter d that is based on a regression of the ordinales of the log spectral density 

on low frequencies. The estimator exploits the theory of linear filters to write the process: 

(I - B)d  x, = u, ; u,  -  i.i .d.(0. <x2 ) (35) 

where .v, is a stationary linear process with a spectral density function fa  (vv). which is finite and 

continuous on the interval [-;r.;r]. The spectral density of x, is: 

/.*(*) = 
2/r 

[4sin:(vv/2)] ' '  fc(w ) (36) 

Then, by taking the logarithms, adding and subtracting ln(/L, (0)) on both sides 

ln(/x ("••)) = In Q'fv (0) 
2H 

-</ln[4sin:(vv/2)]+ In 
fc ( •t') 

.  fv (°) 

Suppose that a sample {.r,} of size T is available. Let w j  T 
=~~ '• J ' =0.1,2 T -1 

denote the harmonic ordinales and /(vv; r) denote the periodogram at those ordinales. Evaluating 

the latter equation at w r and rearranging 

ln{/(wyr)}= In 

The intercept is In 

g2/t/(0) 

2tt 

ozfu (0) 

2n 

-d ln[4sin:(wy T /2)]+ In 

plus the mean of In 

'  fa 
+ ln 

" '(w/.r > " 

L A'(0) J (37) 

/ (wy - r)  

fx ( lv;.r ) 
. The latter term is considered to 

be the error in the regression. The one before the last term in (37) is negligible as attention is 

confined to frequencies near zero. The proposed estimator is the slope coefficient in the least 

squares regression of ln{/(w; r)} on a constant and ln[4sin2(w; T /2)] ; y =1.2 g (T), where 

5(7) is chosen to be 705 following GPH (1983). Then one can employ the usual t test for the 

significance of the differencing parameter. 



www.manaraa.com

18 

6. Simulation Results 

We examine the finite sample properties of the GPH and MRR tests, by analyzing the 

performance of those tests with different data generating mechanisms via Monte Carlo methods. 

Critical values used in the Monte Carlo simulations are based on the asymptotic distribution of 

the tests in consideration. 

The outcomes of all simulations are illustrated in figures. The visual display of results allow 

for a better empirical assessment of the evolution of ARCH. MRSARCH and long memory 

process in time (Fig.2) and the behavior of their sample autocorrelation functions (Fig.3). 

The simulation results (Fig.4) suggest that the MRR test is conservative in the sense that it 

tends to reject the null of short memory less frequently than the nominal 5% significance level. 

According to the calibration procedure the autoregressive parameter of the ARCH process 

increases as the differencing parameter increases. Intuitively we may expect that the higher the 

autoregressive parameter, or the higher d is. the lower the size of MRR test. However, the MRR 

test is robust to the autoregressive parameter in the conditional variance, because the truncation 

lag parameter that controls the amount of autocorrelation to be discounted is being adjusted 

according to the dependence in the data. The GPH test for ARCH processes (Fig.4) has size close 

to its nominal significance level of 5%. The behavior of GPH varies little across different ARCH 

processes with different autoregressive parameters. Overall. GPH test has lower size than MRR. 

The extent of frequencies to be included in regression in frequency domain is fixed at the square 

root of the sample size and that impedes its ability to adjust for serial correlation. When it comes 

to the simulated long memory processes through a Semi-Markov process, the power of the MRR 

test (Fig.5) increases with the differencing parameter. The same pattern arises for the GPH test 

(Fig.5). The power of the tests for the same long memory differs, however, granting more 

rejection of the null of short memory for various differencing parameter values and sample sizes. 
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FIG.2 

TIME PATH OF ARCH, 

MRSARCH. AND LONG MEMORY 

FIG.3 

AUTOCORRELATION 

FUNCTIONS OF SQUARED 

ARCH. MRSARCH AND LONG 

MEMORY PROCESSES 

. I , 

ARCH«z0 =4.38 .a, = 0.64. n =500) 

MRSARCH 

(ar^ = 4.0038. ûr,ll) = 0.2865. p  =  q  =  0.9. « = 500) 

Series rwsarcn 

M 

Simulated Long Memory 

(,v0 = 0.99, P = 1.02, log normal(0,5), n = 500) 

Senes longmemory 

1  I  H  ,  1 1 1 1 1  i  i  i  1 1 ,  



www.manaraa.com

20 

FIG.4 ARCH AND LONG MEMORY TESTS 

All processes have the same unconditional variance and equal sum for the first 5 autocorrelations 

for a given differencing parameter. The differencing parameter stands for the long memory process to 

which the sum of the first five autocorrelations is calibrated. Each simulation is done on 1000 repetitions. 

Nominal size is 95%. 

FIG.5 LONG MEMORY AND LONG MEMORY TESTS 

The parameters for Pareto and LogNormal distributions are as given in the Table. A common 

value of .t0 = 0.99 was used for each simulation. Nominal size is 95%. 

CaiiDrated ARCH and MRR test for afferent sample size» Calibrated ARCH and GPH test 'or afferent samote sues 

Long Memory and GPH test tor afferent samp* sizes Long Memory end MAR lest for  afferent temple me» 
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FIG.6 MRSARCH and MRR TEST 

Across a given differencing parameter all MRSARCH processes have the same unconditional 

variance and equal sum for the first five autocorrelations. The parameter a?,'1' is calibrated given the sum of 

a u t o c o r r e l a t i o n s  f o r  t h e  l o n g  m e m o r y  p r o c e s s  a n d  a l
Q

u  i s  c a l i b r a t e d  a f t e r  t h e  c h o i c e  o f  a , l h  ,  g i v e n  ( p . q )  

pair. Nominal size is 95%. 
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Calibrated MRSARCH, d=0.4 Calibrated MRSARCH , d=0.49 
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The same over-acceptance behavior is observed for MRR test in MRSARCH processes. 

(Fig.6). Almost all sizes of the test are higher than a 95% nominal size level. For various 

differencing parameter and sample sizes. MRR test has the highest rejection rate with the {p.q) 

pair of (0.9.0.9) 9 out of 12 cases, which corresponds to the highest persistence considered in 

Markov Regime Switching. It is not possible to see an inverse relationship between the state 

transition probabilities and the size of MRR test from 0.3 through 0.9. The behavior of MRR 
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seems unpredictable for small and moderate p.q values, but the dramatic change for 0.9 is pretty 

obvious. In other words, as the switches across states occur less frequently, then the process tends 

to develop more persistence in variance leading to a higher rejection rate for the MRR test. But 

one observation is clear: As persistence in MRSARCH process increases so does the rejection 

rate due to false presumption that it has long memory features. As for the GPH tests (Fig.7) for 

various differencing parameter values, the size of GPH follows a nonlinear pattern with changing 

sample sizes, but the lowest size still occurs at p.q pair of (0.9,0.9) in 10 out of 12 cases. 

FIG.7 MRSARCH and GPH TEST 

Calibrated MRSARCH, d=0.1 Calibrated MRSARCH, d=0.3 

0.3 04 0.5 06 
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0.7 0.8 09 

Calibrated MRSARCH, d=0.4 

m m <7i 
o m 

X en 
a 
a (A 

O) 
ft 

(75 O 
OI 
m n 

• 500 
A 750 
• 1000 

0.3 04 0.5 0 6 

P.q 

0 7 0 8 0 9 

Calibrated MRSARCH, d=0.49 

0.3 0.4 0.5 0.6 

P.q 

0.7 0.8 0.9 03 0.4 05 0.6 

p.q 

07 0.8 09 

The last two figures (Fig.8 And Fig.9) display the persistence associated with Markov regime 

switching. MRSARCH almost always has a lower size for the long memory tests, supporting the 

notion that switching processes attribute more persistence to the underlying process 
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FIG.8 COMPARISON of ARCH AND MRSARCH in MRR TEST 

MRSARCH (p,q=0.9) and ARCH, d=0.1 MRSARCH (p,q=0.9) and ARCH. d=0.3 

3 S 
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MRSARCH 

MRSARCH (p,q=0.9) and ARCH. d=0.4 MRSARCH (p,q=0.9) and ARCH. d=0.49 

HnVMUt Mfflow wa 

FIG.9 COMPARISON of ARCH AND MRSARCH in GPH TEST 

MRSARCH (p.q=0.9) and ARCH. d=0 1 MRSARCH (p.qsO 9) and ARCH. d=0 3 
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For the figures illustrated, the ARCH process when squared had a mean of 11.84, 

MRSARCH 11.89, pretty close suggesting correct calibration. As for the long memory process. 
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although the individual means of the squared series varied, the mean of the 500 replications 

resulted in a mean value of 11.63, again validating ergodicity and our calibration procedure. 

Conclusion 

The finite sample properties of long memory tests are investigated using Monte Carlo 

methods. The size and power of MRR and GPH tests are examined under various data generating 

mechanisms. Three different processes. ARCH. Markov Switching ARCH and Long Memory 

series are generated using identical noise series. To better assist in the comparison of various 

tests, all three processes were calibrated to have equal unconditional variance and identical sum 

for the first five autocorrelations. The simulations in this study provide better information than 

Cheung (1993) as to the comparison of the size and power of MRR and GPH tests, since other 

factors, autocorrelations and unconditional variance are accounted for. The performance of long 

memory tests on a two state Markov Chain is provided. It also adds to Cheung's analysis by 

providing the performance of long memory tests in the presence of structural changes. The sizes 

of MRR and GPH tests are not corrected through Bootstrap simulations, as that was a secondary 

objective for our purposes. 

This study has its common feature with Hsu (1997) and Liu (2000) by its expository analysis 

of how regime switching processes tend to behave like a long memory process. The loss in the 

size for MRR and GPH tests when the persistence to stay in a given state is high in MRSARCH 

processes is observed. At the other end of the spectrum, a Semi-Markov process with Pareto 

waiting times illustrates how persistence could lead to long memory type behavior. 

Both MRR and GPH tests are found to be quite robust to ARCH and MRSARCH effects. The 

simulation outcomes suggest that MRR test is more conservative in the sense that it tends to reject 

the null more frequently than the nominal 95% significance level. MRR results turn out to be 

more conservative than other similar studies. (Cheung, 1993) In both tests MRSARCH always 

had the smallest size confirming the common argument that switching processes create 

persistence in the variance. The power of the MRR test for regime switching stochastic volatility 

increases with the differencing parameter. As for GPH test, the change in the differencing 

parameter significantly affects the power . 

Overall, Monte Carlo results suggest the importance of persistence in regime switching 

behavior for creating long memory features. An important analogy is in place here: The 

simulation results suggest that as the differencing parameter d is increased, the process acts more 
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like a long memory in the Semi-Markovian process. However. P decreases with increasing d. 

and that prolongs the expected waiting time in the switching regime. Thus, one is more likely to 

stay at a given realization. Similarly, in a MRSARCH process, as p.q pair decreases one is more 

likely to remain at a given state and thus more persistence arises. Our simulations attest 

empirically to Liu's findings on changing persistence with tail index of the waiting distribution. 

Liu observes that although the Markov Chain regime switching model does not truly represent 

stock market volatility, the persistence to stay in a given state is above 0.9. Our findings from the 

simulation also indicate that the highest persistence is obtained with high transition probability of 

returning to the same state. 

APPENDIX: 

In what follows. I derive the unconditional variances and the autocorrelations for the ARCH. 

MRSARCH and Long Memory processes. An ARCH process is defined as: 

e, = u, . u, - i.i.d. N(0.1). and E(e2 ) = or0 + or, E(e,2_, ) (A. 1 ) 

The unconditional variance of £, is equivalent to that of . and hence 

V(f,)=-^_ (A.2) 
1-or, 

The autocorrelation at the i-th lag for the e; sequence is or,'" . 

For a MRSARCH process, the variance and the autocorrelation are just a weighted average of 

the low and high volatility states with weights equal to the ergodic probabilities. That is 

V(MrsArch) = HlL . (A.3) 
2 - p - q  l-or,(1) 2 - p - q  l-or,'2' 

Letting = 2af
0

l) and or,2' =2or,(U 

VWrsArck)- l"> 2g°" . (A.4) 
2-p-<? 1-or, 2 - p - q  l-2or, 

Similarly 

P(i) = _1 q (a,")' + 1 P (2or," )' (A.5) 
2 — p — q  2 — p — q  

For the Semi-Markov process that approximates long memory, I write the generated series as: 
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e t  = u i ^ v N ( n  •  u i  - i d  J .  N i  0,1), and Cov(«,.vV(n) = 0 

v, - lognormali j A . a 2 )  , s &  Z "  and N(t) is a counting process with Pareto(x0,/?) interarrivai 

times. In this case 

V { e ,  ) = E { u ; v S i n  ) = E ( u ~ ) E ( v S U )  ) = £(£(viV(n ) 17V(f)) = e M ^ 1 2  (A.6) 

As for the correlation, I calculate the variance and covariance of e2 sequence. 

V(e2 ) = £(«>;„, )-(E(e2))2 =3EiE{vl(n\N{t))-Vi£l)2 =3e2(fl^-e2^a'' (A.7) 

Covie2, ) = Eie;el{ ) - £(f,: )£(f,2., ) 

— £(W, v.v<r)"/-»-lVjV((-M) ) — ^^V.V(/»1) ) 

= Cov(v V(n, ) 

=  E i E i v y a ) V } J U r h )  |  N i t ) ,  N i l  + A)) - £(£(vvm | N i t ) ) 2  

= (£(v;)-e:^)£( l{/V(n=.V(,.ul) 

= (vU2  -M2)P(B ;  >l) = (g-c^'  

(A.8) 

P(l)  = 
V(£,-) 3(1'"r,-e2»""" V-l 

Since /? G (1,2) and x0 < 1. /?(1) is always less than 1, and has an upper bound 1/3. 

I equate the sum of the first five autocorrelations of the long memory process to the 

ARCH process and calculate the ARCH and MRSARCH parameters for different (p.q) pairs. 

ARCH MRSARCH LONG MEMORY 

z=l 

5 

I 
i=l 

!S—ia^y p  ( 2 a } l )  ) '  
2 - p - q  2 - p - q  

0-1 
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CHAPTER 2 
STRUCTURAL VARs OF REAL EXCHANGE RATES: 

WHAT HAVE WE LEARNED? 
EVIDENCE FROM G-7 COUNTRIES 

1. Introduction 

This paper takes up the question: do structural vector autoregressions (SVARs) of real 

exchange rates provide us with reliable information as to the driving forces behind one of the 

mostly examined variables in international finance? There may be a couple of reasons why one 

would be interested in the answer to such a question. Firstly, this would help assess the relative 

merits of vector autoregressions (VARs) with long run restrictions within the framework 

developed by Blanchard and Quah (1989). Secondly, using variance decompositions it helps us to 

understand the relative importance of different types of shocks on the real exchange rates. It also 

may be relevant to empirically test the validity of real exchange rate models through the use of 

impulse response functions. 

SVARs of real exchange rates is one of the quite often-used methods of examining real 

exchange rate behavior. Applications of SVARs to study real exchange rate dynamics differ 

according to the variables used in the decomposition, the types of shocks that are being modeled 

and whether the decomposition is supported by a theoretical model of exchange rate movements. 

Lastrapes (1992) estimates a bivariate S VAR of real and nominal exchange rates and identifies 

the transient and permanent components. Evans and Lothian ( 1993) estimate a trivariate system 

of real exchange rate, domestic inflation and foreign inflation with the same set of transitory and 

permanent shocks as in Lastrapes (1992). The seminal paper by Clarida and Gali (1995) is the 

first to decompose the permanent shocks into supply and demand shocks. Clarida and Gali 

present an open economy macro model that can be used to interpret the trivariate VAR of relative 

real gross domestic product (GDP), real exchange rate and relative prices. Enders and Lee ( 1997) 

differentiate between the effects of real and nominal shocks using the well-known Dombusch 

(1976) 'overshooting' model of a small economy with real and nominal exchange rates in their 

decomposition approach. Rogers (1999) enriches the VAR with five variables and five shocks. 

The interesting feature of Rogers is that it partitions the monetary shocks into money demand and 

money supply shocks. Despite the different specifications among these SVARs, some common 

perceptions have emerged from this literature regarding how real exchange rates have been 

determined in the post-Bretton Woods period. First, real shocks dominate nominal shocks 
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(Lastrapes, 1992; Enders and Lee. 1997;Clarida and Gali, 1995). Second, demand shocks are 

much more important than the supply shocks in explaining real exchange rate fluctuations 

(Enders and Lee, 1997; Clarida and Gali, 1995). Third, sticky price models fare well in general 

and there is evidence for an overshooting effect of the nominal shock in accord with the 

predictions of such models (Lastrapes, 1992; Enders and Lee, 1997; Clarida and Gali, 1995). 

Fourth, the role of monetary shocks increases when more shocks and more variables are 

incorporated for the structural estimation (Rogers, 1999). 

In the remainder of this paper I take a closer look at the shock identification process in S VAR 

modeling, using the same theoretical model as Clarida and Gali (1995) and using data from the 

G-7 countries, with the U.S. serving as the home country. I find that the estimated responses of 

the system to the supply, demand and nominal shocks identified by the theoretical restrictions are 

not as supportive of the theory as the previous literature has suggested. More specifically, the 

short run and the long run predictions of the theoretical model are not supported by the impulse 

response functions for the variables used in the trivariate S VAR system. 

2. A Dynamic Exchange Rate Model 

Clarida and Gali (1995) base their empirical analysis upon a stochastic version of the two-

country. rational expectations open macro model developed by Obstfeld (1985). The model 

exhibits the standard Mundell-Fleming-Dornbusch results in the short-run, with prices adjusting 

sluggishly to demand, supply, and nominal shocks. But it also embodies the long-run properties 

that characterize the macroeconomic equilibrium in the open economy once prices fully adjust to 

all shocks. The model is presented below. All variables are expressed in terms of home relative to 

foreign levels and all variables except for interest rates are in logarithmic form. 

IS Equation: y f  =  d ,  +  r j { s t -  p t ) ~  o [ i ,  -  E ,  ( / > „ ,  -  p ,  )]; rj > 0,a > 0 

LM Equation: mr - pt — v, - Ai, ; À > 0 

Price Setting Equation: p, = (1 - d)E,.l p' + 0 p' ;0€ [0.1] 

Interest Parity Equation: /, = E,(s!+X -s,) (4) 

(1) 

(2) 

(3) 

and 
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A y f  = a ( L ) e s [  

Specification of the Exogenous Processes: A d r = b ( L ) e d l  (5) 

Am, =c(L)e „ 

where yf is the relative demand for output, yf is the relative supply of output, s, is the 

nominal exchange rate, p, is the relative price level, /, is the relative nominal interest rate, m, is 

the relative nominal money supply, and pf is the market-clearing relative price level. 

Equation (1) is an open economy IS equation in which the demand for home output relative 

to foreign output is increasing in the real exchange rate q,. defined as s, - pt, and relative 

demand d,, and is decreasing in the real interest differential in favor of the home country. 

Equation (2) is the standard LM equation. Equation (3) is the price setting equation, with the 

price level in period t being an average of the market clearing price that is expected in r-l. 

and the price that would actually clear the market in period t. The parameter 6 measures the 

degree of price flexibility. When 6 = 1. prices are fully flexible. Equation (4) is the interest 

parity condition. 

The stochastic processes driving the exogenous variables, vf ,dt and mt, are given in (5). 

£ s,£d, andf„ are supply, demand, and nominal shocks, respectively, which are serially and 

mutually uncorrected, zero-mean and finite-variance processes. I regard labor and/or productivity 

shocks as possible supply shocks; fiscal policy as the source of possible demand shocks; and 

money supply/demand as candidate nominal shocks. The polynomials in the lag operator, a(L), 

b(L), and c(L), are assumed to satisfy stationarity conditions so that yf, m,, and d, are difference 

stationary processes. The model predicts the following directional short-run and long-run 

responses to the supply, demand, and nominal shocks (i.e., £s,£d, and £n respectively):1 ~ 

i) Short Run 

Supply demand nominal 

Relative real GDP >0 >0 >0 

Real exchange >0 <0 >0 

Relative Price <0 >0 >0 
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ii) Long Run 

Supply demand nominal 

Relative real GDP >0 0 0 

Real exchange >0 <0 0 

Relative Price <0 >0 >0 

3. Identification of the Structural VAR 

Let Ax, =[Ay, A4, Ap, ]r denote the system's three variables and £, =[é"„ £dl £m ]T denote 

the system's three structural disturbances. I assume that Ar, =[a.V, A<jr, Ap, ]r are generated by 

the following structural moving average (MA) model. 

Ar, = c  +  C 0 £ ,  +C,£-,„, +C:f,_2 + .. (6) 

where C0is the 3x3 matrix that defines the system's contemporaneous structural relationships 

among the three variables. When I estimate a VAR. I do not directly recover estimates of the 

structural moving average model. Rather, I estimate a p-th order VAR as 

Ar, = a  + A, Ar,_, + A2 Ar,_2 +.. + A p x , _ p  +  e, (7) 

and then the moving average model 

Ar, = c + R0e, + /?,<?,_, + Rze,_z + .. (8) 

t 
where c  = A(l)~l a  .  R 0  = / , and R k  = £ A j R k . j  (9) 

/=! 

and Rk denotes the matrix of coefficients for the k-th moving average term after estimating the 

VAR. 

The summation of the vector moving average coefficients as the lags go to infinity 

(VMA(°°))can be approximated through 

R ( l )  =  f t R J = [ l ~  A,  -A 2 - . . -aJ' 1  (10)  
7=1 

in other words by approximating the infinite order VMA representation by the finite summation 

of the individual moving average coefficients. Comparing the two representations 

Ar, =c + C0£, + C,£,_, +C2e,_2 + .. 

Ar, = c + R0e, +/?,<?,_, +#2e,_2 + 

and assuming that there exists a nonsingular matrix S such that 
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e, = Se, (11) 

one can obtain: 

e, = C0e, (12) 

C0 = S  , andC k  =  R k C Q .  

In addition to recovering estimates of the parameters that define the structural MA in (6). one 

can also recover an estimate of the symmetric covariance matrix of the reduced form 

disturbances, Z and 

Z  =  E [ e , e , T ]  (13) 

Suppose as is common in the literature, that the structural shocks are mutually orthogonal and 

that each has unit variance. Then, from ( 12) and ( 13) 

C0C0 =£ (14) 

This represents a system of six equations in nine unknowns. The six equations are derived 

from the three variances and three covariances that define Z. Thus, three additional restrictions 

are needed to identify C0 and to recover the time series of structural shocks e,. as well as the 

structural system dynamics defined by C,.C:.... My open economy macro model is triangular in 

the long run. That is only supply shocks £„ are expected to influence relative output levels, while 

both supply and real aggregate demand shocks elt, are expected to influence the real exchange 

rate in the long run. The nominal shocks ent have no long run impact on either relative output 

levels or the real exchange rate. It can be shown that 

C(1) = C0 +C, + C, +.. = /?(l)C0 (15) 

Using the notation of the model, these restrictions are: 

i) neither nominal nor demand shocks affect relative output levels in the long run: 

Cl2(l) = C13(l)=0 (16) 

ii) nominal shocks do not influence the real exchange rate in the long run: 

C%(1) = 0 (17) 

where C,y (1) denotes the infinite sum of the moving average coefficients of shock j on variable i. 

With the above restrictions C(l) is a lower triangular matrix. The above three restrictions implied 

by the model exactly identify the structural matrix C0. For the initial analysis I do not impose the 

restriction that the nominal shocks have a proportional effect (one for one) on the relative prices. 
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With this additional restriction of C33 (1) = 1, I would have an over-identified system. I briefly 

touch on the over-identified system in section 4.5. Re-expressing /?(1) 

R ( l )  =  R 0  +  + * :  + • •  =  ( '  " Ê A ; ) ~ l  ( I S )  
;=1 

Ax, =/?( l)e, =C{\)£, 

Then. 

fl(l)I/?(l)r =C(l)C(l)r (19) 

/?(l)Z/?(l)r is a positive definite symmetric matrix and thus admits a lower triangular 

Cholesky decomposition. That is how C(l)can be calculated after the VAR estimation and 

obtaining the infinite order MA representation. The Cholesky decomposition is unique up to a 

sign transformation of the columns of the matrix. After solving for C(l), the contemporaneous 

impulse response matrix C0 can be derived as: 

C0 =/?(!)-'cm (20) 

The matrix C0 is also unique up to a sign transformation. Let us denote this property by using the 

previously defined relation CQCQ
T = Z: 

c,,(0) c,2(0) c13(0) c„(0) c2,(0) c3,(°)" >11 ^1: <7t3 

c21(0) C22 (0) C  y (0) cl2(0) <^(0) C32 (0) = <Tl2 n ( y  y 

,c3i (0) c32 (0) c33 (0) 1 O
 

Cy(0) C33CO). &13 °*33_ 

Thus, 

<7,, = c,,(0)2 +c,,(0): + e,3(0): 

=f:,(0)" +c,2(0)2 + c23(0)2 

^33 =c3l(0)2 + c32(0)2 + c33 (0)2 

<T,2 = c,, (0)c21 (0) + c12 (O^y (0) + cI3 (0)cI3 (0) (21) 

<7,3 = cn (0)c31 (0) + c12 (0)c32 (0) + c13 (0)c33 (0) 

a23 - cn (0)c3i (0) + C22 (0)c32 (0) + c23 (0)c33 (0) 

The crucial point to recognize here is that the groups of parameters {cu(0),c21(0),c31(0)}, 

fciz (0). C22 (0), c32 (0)} and {cI3(0),c23(0),c33(0)} can change sign together without affecting the 



www.manaraa.com

35 

equations. The interesting nature of the restrictions lends itself to eight different solutions for the 

nine parameters, where the absolute values of the solutions are all equal for each parameter, and 

the plausible solution can be judged using an exchange rate determination model. The way I 

determine the signs of the elements of C0 will be by taking into account the long run effects of 

supply shocks on relative real GDP, long run effect of demands shocks on real exchange rate and 

long run effect of nominal shocks on relative prices or inflation3. After deciding on C0. the 

structural dynamics, Ct, can be derived using Ck = RkC0, where C* is the impulse response 

matrix for the k-th lag of the structural disturbances. The accumulated impulse response of a 

k 

shock at time t of a structural disturbance after k lags is C; . These are also called the 
j=« 

accumulated impulse response functions of a supply, demand or nominal shock on the levels of 

the variables relative real GDP. real exchange rate and the relative prices. 

The forecast error variance decompositions for each variable shows what proportion of the 

forecast error variance at different forecast horizons can be attributed to each structural shock in 

the model. For example the forecast error variance of the / - th variable in Ax. due to the 

structural disturbance j at the k-th lag will be: 

-r1 (22) 
ÈÊM»') 2  

/si m=0 

where c t J  ( m )  is the (/. j)'h element of the matrix Cm . 

One might also be interested in the forecast error variance decomposition of the variables in 

levels rather than in differences. For instance, the forecast error variance decomposition for the 

level of relative output would, by construction, force the contribution of supply shocks to 

asymptote to 100 percent as the forecast horizon lengthened, and the contributions of the other 

shocks would commensurately decline toward zero. 

Let us try to find the forecast error variance at the levels for the short horizons: 

Let forecast horizon be zero. Then: 

Ax, - £, (Ax, ) =C0£t 

x, ~x,-l -E:x, I = X, -E,.X, =C0£, 

Then, the forecast error for the levels of the variables is C Q e , .  
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Let the horizon be equal to one. Then: 

- E, (Ar„, ) = C0f„, + C.f, 

Co £( T | +C,f, + -V, £r-V, Cg £, +• Cgf,,, + C[ £\ 

For horizon equal to two: 

XITZ E-tXl*rl = CqE,^l + [C0 + C, ]f,,.| + [Cq + C, + Ci ]f, 

Let us denote the accumulated impulse response at the k ' h  horizon by AIMP(k) 

Expressing the forecast error at horizon 0.1,2: 

Horizon Forecast error 

AIMP(O) 

AIMP(0)+AIMP( 1 ) 

0 

(23) 

2 AIMP(0)+AIMP( 1 )+AIMP(2) 

A I M P { 0) = C0 . A I M P ( \ )  = C0 + C,. A I M P { 2) = C0 + C, + C2 

Accordingly, the forecast error variance of the i-th variable in .t, due to the structural 

disturbance j for the forecast horizon k will be: 

where aimpt] (m) is the (z, j)'h element of the matrix AIMP(m). 

4. Estimation 

4.1. Data 

I use quarterly observations for the G-7 countries (with the U.S. as the home country) from 

1973:11 - 1992:1V, except for Germany for which the data spans 1978:01 - 1992:IV. The data 

samples roughly correspond to the samples used by Clarida and Gali (1995) and I have expanded 

the set of countries by adding France and Italy.4 The transformed variables are: y, the log of real 

GDP. U.S. less foreign; q, the log of the real exchange rate, the price of foreign goods expressed 

in terms of U.S. goods; and, p. the log of the relative price level, measured by the Consumer Price 

Index (CPI), U.S. less foreign. 

The VAR used by Clarida and Gali (1995) is expressed in terms of the first differences of 

relative real GDP ( Ay, ), the real exchange rate ( Aq, ), and the relative prices level ( Ap: ). 

t 
£ti/mp,y(m)2 

3 k 

E £ a/mp,,(m)2 

(24) 
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Therefore, it is assumed that y„ q,, and p, are unit root processes, but they are not cointegrated. 

Unit root test results are reported in Table 1. The Phillips-Perron (PP) test fails to reject the unit 

root null hypothesis for the real exchange rate for any of the six countries. The Augmented 

Dickey-Fuller (ADF) test rejects the unit root in the real exchange rate for only one country, the 

United Kingdom. ADF and PP tests of the unit root in the relative real GDP series do not reject 

the null against the alternative of trend-stationarity at the 5% significance level, except for real 

GDP relative to Canada where both tests reject the unit root null against the trend-stationarity 

alternative. The unit root tests for the relative prices reject the unit root null against the trend-

stationary alternative for Japan and render conflicting results for the United Kingdom. 

For the four cases where one or both tests reject the unit root null at the five-percent level, 

Kwiatkowski, et al (1992, KPSS) tests of the (trend) stationarity null were applied and the results 

are reported in Table 2. For U.S. real GDP relative to Canada and the U.S. price level relative to 

the U.K., the KPSS test rejects the trend-stationary null at the five-percent level. However, the 

KPSS test does not reject the trend-stationary null for the U.S. price level relative to Japan and it 

does not reject the stationarity null for the U.S.-U.K. real exchange rate. 

I also performed unit root and stationarity tests for the differenced version of the series. The 

results, which are available upon request, indicate that each series appears to have at most one 

unit root. Thus, although there are some exceptions, my results suggest that it is reasonable to 

proceed as in Clarida and Gali (1995) and treat all variables as having a single unit root, 

achieving stationarity by first-differencing.5 

Johansen tests for the number of cointegrating vectors in the system {y. q. p}are contained in 

Table 3. The likelihood ratio test (LR) was applied to the trivariate VAR in levels as a starting 

point to help determine the lag lengths for the cointegration tests. Letting r denote the rank of the 

cointegrating space, the tests applied are of the form, Hq: r = 0 vs. HA: r = 1. The A,ract tests 

are of the form. Ho: r = 0 vs. HA: r > 0. Once small sample corrections (Cheung and Lai, 1993) are 

applied to the cointegration test statistics z,mcr and /im, I find no evidence of cointegration at 

the five-percent significance level using the test, though the five-percent sized A,racr tests 

suggest there is at least one cointegration vector for France and Italy. Overall, however, these 

results provide a rationale to proceed as in Clarida and Gali ( 1995) and assume the existence of 

finite-order VARs in first differences without including any error-correction terms. 
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The VAR was estimated by OLS for each country using the same lag lengths as in Table 3. 

The estimated VAR and the identifying restrictions were applied as in Blanchard and Quah 

( 1989) to estimate the VMA. which was then used to construct impulse response functions and 

variance decomposition tables. 

4.2. Impulse Response Functions 

Figures l.a, l.b, and l.c illustrate the estimated impulse response functions along with 90-

percent confidence bands. The lag lengths are the same as those used for the cointegration tests 

reported in Table 3. Kilian (1998) shows that constructing confidence bands for impulse response 

functions in VARs using the asymptotically correct normal approximation can be misleading in 

small samples. Table 4 shows the results from applying Kolomogorov-Smirnov tests for 

normality based upon bootstrap samples of a set of impulse responses for the U.S.-Canadian real 

exchange rate. The bootstrap distribution of the impulse responses is skewed and normality is 

rejected. Therefore. I use Runkle's (1987) bootstrap procedure in the construction of the 

confidence bands.6 

Consider first the point estimates of the impulse responses. I want to examine whether the 

signs of the short- and long-run responses of U.S. relative output, the U.S. real exchange rate, and 

the U.S. relative price level to positive one-unit relative supply, demand, and nominal shocks are 

consistent with the predictions of the structural model. Or, as Clarida and Gali ( 1995) put it, I use 

the estimated impulse responses "to assess whether or not the shocks that my procedure identifies 

as supply, demand, and nominal shocks look like' supply, demand, and nominal shocks are 

supposed to look." 

In support of the model, note that for all six countries: relative real GDP increases in response 

to a relative supply shock, the relative price level increases after a positive nominal shock, and the 

real exchange rate appreciates after a positive demand shock. These responses are consistent with 

the theory for both the short-run and the long run. 

However, there are many discrepancies between the estimated responses and the predictions 

of the theory. Positive "demand" shocks are found to decrease U.S. output levels relative to 

France. Germany and Italy and they are found to decrease U.S. prices in the long-run relative to 

France. Germany. Italy, Japan, and the United Kingdom. Positive "nominal" shocks are found to 

decrease U.S. output in the short-run relative to Japan and initially cause the French real 

exchange rate to appreciate. Positive "supply" shocks are found to decrease the real exchange rate 
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for Germany, France, Italy and the United Kingdom and these shocks are found to increase the 

long-run price level relative to Japan and Germany. Thus, I find numerous discrepancies between 

the estimated responses and the theory's predictions. The Canadian case is the only one that 

exhibits the predicted responses to all three shocks. 

Of course, it can be argued that point estimates only tell part of the story and that sampling 

error should be taken into account through the construction of confidence intervals. However, in 

this case it appears that the data are of little use in helping us understand real exchange rate 

determination through the use of the structural VARs. In particular, observe in Figures l.a. l.b, 

and l.c that the confidence intervals are consistent with the hypotheses that: supply shocks and 

nominal shocks do not have significant effects on the real exchange rate for any of the six 

countries; supply shocks do not have significant effects on the relative price level for any country; 

and, most of the responses to demand and nominal shocks are not significant.7 

4 J. Robustness: estimating with different lag lengths 

There are different ways one can handle the choice of lag lengths in a VAR framework. 

Among the alternative procedures commonly used are the Schwartz Bayesian Criteria (SBC), the 

Akaike Information Criteria (AIC), and the Likelihood Ratio Test (LR). In this section. I consider 

how robust the structural VAR results are to different lag lengths. 

The results presented above were based on the LR test combined with an examination of the 

properties of the residual.8 In four cases (Germany, Italy, Japan, and the U.K.) my criteria 

selected the lag length of four, coinciding with the lag length selected without pretests by Clarida 

and Gali (1995). However, for Canada and France, the criteria selected a lag length of three. 

Figure 2 illustrates how the results for Canada and France differ according to whether the lag 

length is set at three or four, presenting us with a glimpse into the sensitivity of the full set of 

results to lag length variation. For Canada, the real exchange rate impulse responses to a nominal 

shock with a VAR lag of three in differences (and, therefore, four in levels) are in accord with the 

theory. However, with a lag length of four in differences, the short-run sign is reversed with the 

real exchange rate initially appreciating, then converging to zero without ever depreciating. For 

France, the LR-selected lag of three generates an unexpected exchange rate appreciation in the 

short run. However, if I increase the number of lags to four, I observe the expected short-run 

behavior in the exchange rate. 
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4.4. Canada and cointegration 

Canada is the only country in my set for which the point estimates of the impulse responses 

have the correct signs both in the short and long run (Figure la). Moreover, in this case, the real 

exchange rate depreciates and overshoots in response to a nominal shock. Overall, Canada seems 

to be the best candidate for satisfying the model's predictions. This brings up the question: in 

what way is Canada different from the other five countries in the sample? 

Table 3 gives a possible explanation. The existence of a finite-order VAR in first-differences 

relies on the no-cointegration assumption. Previously, I argued that this assumption can be 

justified for all six countries if the Attest is used with a five-percent significance level and if 

the Cheung and Lai (1993) small sample correction is applied. However, if the A,mce test is used, 

or if the significance level is increased to 10-percent, or if asymptotic critical values are used, the 

argument for no cointegration weakens considerably. In fact. Canada turns out to be the only 

country for which the null of no cointegration cannot be rejected regardless of which test statistic 

is applied, whether the five-percent or 10-percent significance level is used, and whether a small 

sample correction is or is not made. Put another way, for every other country in the sample an 

argument can be made that cointegration appears to be present and so the fundamental 

assumption of a finite-order VAR in first-differences is inappropriate and the results that follow 

may be misleading. 

To push this point a bit further, consider Figure 3. which presents the impulse response 

functions of the real exchange rate due to a supply shock for Canada using two different data 

samples: the original sample, 1973:0 - 1992:IV, and an extended sample 1973:0 - 1997:111. The 

sign of the long-run response of the exchange rate to a positive supply shock depends on the 

sample period. The U.S.-Canada real exchange rate depreciates when I use my original sample, 

but it appreciates when I use the extended sample. What is striking is that the sign reversal is 

related to the results of cointegration tests. When the Atract statistics indicates possible 

cointegration at the five-percent or 10-percent level, the sign is reversed and the theoretically 

incorrect appreciation of the real exchange rate is observed for Canada. 

4.5. Over-identifying Restrictions 

In Clarida and Gali model one unit nominal shock has a one-for-one effect on the relative 

prices in the long run. My initial decompositions do not take it into account as the model is 

already exactly identified by the three long-run restrictions. The additional restriction for the 
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nominal shock is an over-identifying restriction and I check for the validity of the restriction in 

the model through x~ tests. The test statistics in Table 5 strongly reject the over-identifying 

restrictions and therefore my decomposition is justified. This is not surprising given the 

shortcomings of a structural VAR model. In my decomposition all temporary shocks are 

aggregated under the name nominal shock. Although I expect that shocks to money supply and 

money demand are predominant among the temporary shocks, it is not likely that all transitory 

shocks to the system will create the aggregate effect on the price level bringing about one-for-one 

rise due to a nominal shock. 

4.6. Variance decompositions 

Table 5.a provides decompositions of the k-step-ahead error variance in forecasting the 

(logged) level of the real exchange rate into the proportion attributable to each of the structural 

innovations. Under the assumption that the real exchange rate is a unit root process, the 

unconditional variance of the real exchange, which is the limit of the k-step forecast error 

variance as k goes to infinity, is not finite. However, the unconditional variance of the stationary 

first-differenced exchange rate is finite. Its decomposition can be inferred from Table 5.b, which 

provides decompositions of the conditional variance of the differenced log of the real exchange 

rate into the proportion attributable to each of the structural innovations. 

Table 6 also includes 90-percent confidence intervals for each estimated proportion. 

Lutkepohl ( 1990) shows that, if the restriction that they sum to unity is not imposed, the estimated 

proportions are asymptotically normal. However, as Figure 4 illustrates for the Canadian case, the 

bootstrap distributions of the variance decompositions are rather skewed. For example, the 

proportions of the forecast error variance in the real exchange rate and in the relative price level 

due to supply shocks are strongly skewed to the left. However, the proportion of the forecast error 

variance in relative real GDP due to supply shocks is strongly skewed to the right. As a result, I 

chose to report 90-percent confidence intervals derived from the empirical bootstrap distribution. 

First, consider the conditional variances of the (logged level of the) real exchange rate 

reported in Table 6.a. For all six countries, demand shocks dominate in the short-run and long-

run. For Canada and the United Kingdom, demand shocks account for over 90-percent of the 

forecast error variance at horizons 1, 4, 12, and 24 quarters. For Germany, demand shocks 

account for over 90-percent of the forecast error variance at horizons 1, 4, and 12 and they 

account for 86-percent of the conditional variance at horizon 24. For France, demand shocks 
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account for 90-percent of the forecast error variance at horizon 1, with this proportion declining 

monotonically to 80-percent as the horizon increases to 24. For Japan, demand shocks account for 

72-percent of the conditional variance one-quarter ahead, monotonically increasing to 94-percent 

at 24 quarters ahead. Demand shocks account for 62-percent to 73-percent of the conditional 

variance for Italy. Notice the size of the corresponding 90-percent confidence intervals. If I use 

the lower ends of these intervals (and upper ends of the intervals for the other shocks) I still 

conclude that demand shocks are an important source of variation in the exchange rate, though 

they become less important than supply shocks for France, Germany. Japan, and especially. Italy. 

Nominal shocks explain less than 10-percent of the conditional variance in the real exchange 

rate, regardless of the country or horizon. For the France, Italy, and the U.K.. the proportion is 

less than one-percent at all horizons. For Germany and Japan, it is less than four-percent at all 

horizons. However, if I use the upper ends of the 90-percent confidence intervals, the story 

changes substantially. For example, at one-quarter ahead, nominal shocks explain about 20-

percent of the conditional variance in the Japanese real exchange rate, 30-percent for France. 35-

percent for Canada. 43-percent for the United Kingdom. 50-percent for Italy, and 57-percent for 

Germany. As the horizon increases, the upper ends of these intervals decrease, and in all six cases 

they fall below 10-percent by horizon 24. So, although there appears to be a lot of uncertainty 

about the short-run importance of nominal shocks on the real exchange rate, the evidence for 

long-run neutrality is much stronger. 

Supply shocks account for at least 25-percent of the conditional variance of the Italian 

exchange rate and 10-percent of the French exchange rate at horizons 1, 4,12. and 24, becoming 

more important as the horizon increases for both countries. These shocks play an important role 

in explaining the short-run (i.e., one-quarter and four quarters ahead) real exchange rate for Japan 

and the long-run (i.e., 24-quarters ahead) real exchange rate for Germany. They explain less than 

10-percent of the conditional variance in the exchange rates of Canada and the U.K. at all 

horizons. However, the 90-percenet confidence intervals indicate that these conclusions are very 

tenuous. For example, using the upper ends of these intervals, observe that supply shocks may 

explain as much as 40-percent to 50-percent of the exchange rate for Canada at all horizons. 

Using the lower ends of these intervals, observe that supply shocks may explain as little as two-

percent of the exchange rate for Italy at all horizons. 

Next, consider Table 6.b, which presents the forecast-error variance decompositions for the 

differenced logs of the real exchange rate. The proportion of the k-step-ahead forecast-error 
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variance in the differenced exchange rate attributable to a particular type of shock will converge 

as k increases to the proportion of the unconditional variance attributable to that shock. In Table 

5.b I observe that convergence occurs within the first 12 quarters. I also observe that demand 

shocks account for nearly 90-percent of the variance in the differenced exchange rate for Canada. 

France, Germany and the U.K.. and about 70-percent of the variance for Italy and Japan. Supply 

shocks play an important role in explaining the variance of the differenced exchange rate for Italy 

and Japan, explaining about 25-percent of the unconditional variances. Nominal shocks explain 

between three-percent and nine-percent of the unconditional variances in these two cases. If I 

consider the implications of the confidence intervals, very different conclusions can be drawn. 

For example, using the upper ends of these intervals, nominal shocks can explain about 25-

percent of the variance in the Japanese rate, about 30-percent to 40-percent of the variance in the 

Canadian and French rates, and about 50-percent of the variance in the German. Italian, and U.K. 

rates. If I use the lower ends of these intervals, supply shocks explain less than 10-percent of the 

exchange rate variance for all six countries. 

My third-order lag length selections for Canada and France differ from Clarida and Gali's 

(1994) fourth-order specification for all countries in their sample. Table 6.c provides results when 

I re-estimate the models for Canada and France using fourth-order VARs. The left-hand-side of 

Table 5.c presents the decompositions of the k-step-ahead forecast error variance for the logged 

levels of the real exchange rate, while the right-hand-side of Table 5.c presents the 

decompositions of the k-step-ahead forecast error variance for the differenced logs of the real 

exchange rate. Observe that i) supply shocks become more important for both countries as the lag 

length is increased from three to four; ii) demand shocks remain the dominant source of variation 

in both exchange rates, though their importance drops somewhat; and, iii) nominal shocks 

continue to be relatively unimportant. 

5. Conclusion 

This paper has provided new evidence on the difficulty of drawing conclusions about real 

exchange rate determination based upon structural VARs. The problems I address, such as the 

sensitivity of the results to lag length selection, are well-known pitfalls of structural VAR 

analysis. My contribution is to illustrate the consequences of these problems for the specific issue 

of real exchange rate determination, focussing on the Clarida and Gali ( 1995) paper. My focus is 
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on Clarida and Gali (1995) because I think that, despite the concerns I raise, it is correctly 

recognized to be a very important paper in the empirical exchange rate literature. 

Using the structural VAR model of Clarida and Gali (1995), but with slightly different data 

and an expanded set of countries, I tried to identify supply, demand, and monetary shocks using 

estimated impulse responses and the predictions of the structural model. In contrast to their 

findings, I conclude that the impulse responses do not easily lend themselves to the 

interpretations as being responses to the supply, demand, and nominal shocks that are part of the 

structural model. I find perverse signs for the impulse responses and, based upon bootstrap 

confidence intervals, these responses are insignificant for most cases and reject any overshooting 

of real exchange rate due to nominal shocks. Setting aside the question of how to interpret the 

shocks identified by the empirical procedure, point estimates of the proportions of the k-step-

ahead forecast error variance in the real exchange rate attributable to each of the three shocks 

provide a reasonably consistent story across the six countries I considered. Demand shocks play 

the most important role, supply shocks play a substantial role, and nominal shocks are 

inconsequential. However, the confidence intervals for these estimates tend to be so large, that 

very different stories are also consistent with these estimates. Other problems I identified include 

sensitivity of key results to lag length selection and the strong possibility that there are 

cointegrating relationships that should be accounted for and are distorting the results. 

I conclude that only for the case of Canada as the foreign country does the structural VAR 

approach provides results that can be interpreted within the context of the theoretical exchange 

rate model. For each of the other countries (France. Germany. Italy. Japan. United Kingdom) I 

conclude that either the theoretical model is inappropriate or the problems in applying structural 

VAR methods are too severe to provide meaningful results in this application. 
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Notes 

1. Derivations for the flexible and sticky price equilibrium can be found in Clarida and Gali 

(1995). It may be argued that demand disturbances have a long-run impact on output. 

Following Blanchard and Quah (1989), I assume that such long-run effects are small 

compared to those of supply disturbances and thus my decomposition approaches the 

correct identification. 

2. Clarida and Gali ( 1995) model the supply and monetary shocks as random walks. They 

model the differenced demand shock as an MA(1) process with an MA coefficient 

between zero and one, so that the demand shock has a transitory component. The 

directional responses I provide are based on those assumptions. 

3. Clarida and Gali (1995) and Blanchard and Quah (1989) offer a rigorous explanation of 

the decomposition procedure, which identifies C(l) up to a sign of its diagonal elements. 

I resolve these ambiguities by trying to match the predictions for certain long-run effects 

of the structural shocks with the estimated long-run impulse responses. These long-run 

selection criteria are: supply shocks have positive effects on GDP. demand shocks 

appreciate the real exchange rate, and nominal shocks increase the price level. 

4. My data for Canada and Germany are from the International Financial Statistics (IFS) 

March 1998 CD-ROM. The IFS data tapes had data for Germany starting from the third 

quarter of 1978. Data for the other countries are from the IFS March 2000 CD-ROM. 

Clarida and Gali (1995) use quarterly data 1976:111 - 1992:IV for Japan, 1974:111 -

1992:IV for Canada, Britain and Germany. Their data sources are as follows: CPI data 

are from International Financial Statistics (IFS) data tapes, real GDP data are from OECD 

Main Economic Indicators and exchange rate data are from Federal Reserve Bank of 

New York. 

5. My purpose in this paper is to question the conclusiveness of the results presented in this 

line of literature. To the extent that the unit root assumptions are incorrect or there are 

cointegrating relationships not accounted for, my argument is strengthened. 

6. All bootstrap results reported here are based on 1000 bootstrap samples. Kilian (1998) 

recommends a bootstrap-after-bootstrap method to get more reliable confidence bands for 

impulse responses, finding that standard bootstrap procedures do not work very well for 

longer-run responses. My interest is primarily on short-run responses. I constructed 
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confidence intervals through Monte-Carlo integration procedure, as well, which is the 

second best in Kilian's analysis. The conclusions do not change regardless of which 

procedure is used. 

7. Note that standard bootstrap intervals do not guarantee that the point estimates will be 

within the confidence bands. The point estimates of the relative price responses to a 

nominal shock for Italy are outside the 90% confidence interval. This is probably due to 

the extreme skewness of the bootstrap distribution of these responses. 

8. I checked the autocorrelation of the residuals in the VAR estimation in levels 

using Ljung-Box test statistics and increased the LR-based lag length until I 

was satisfied that the residual behavior was consistent with white noise errors. 

Had I applied the AIC to select lag length I would have chosen lag lengths of 

two (Germany), four (Canada, Italy), eight (France), 11 (Japan), and 12 (U.K.). 
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TABLE 1 

UNIT ROOT TEST RESULTS 

Variable 
Canada Japan 

Country 
U.K. Germany France Italy 

ADF Tests: 

V r, -4.01" -2.66 -2.45 -0.76 -2.59 -2.24 

r. -3.26** -2.55 -1.17 -0.56 -1.43 -2.27 

-2.24 -1.55 -3.09" -2.56 -1.86 -1.54 

p r, -2.78 -4.41" -3.90" -0.19 -1.46 0.42 

-1.83 -1.58 -3.14" -2.43 1.72 -2.03 

PP Tests: 

>• 
T

< -3.46" -2.20 -2.49 -1.06 -2.50 -3.17" 

M -2.09 -1.97 -1.12 -1.96 -1.60 -1.40 

-1.34 -1.42 -2.03 -1.80 -1.91 -1.03 

p T, -1.84 -4.23" -2.30 0.32 0.16 0.14 

M -1.34 0.32 -3.68 " -3.01 " -2.24 -3.14" 

y = relative logged real GDP, q = logged real exchange rate, p = relative logged price levels. 

ADF: Augmented Dickey-Fuller test statistics. The number of lags included in the ADF 
regressions were selected by the AIC. PP: Phillips-Perron test statistics, constructed using the first 
four autocovariances. Critical values from the Dickey-Fuller distributions with sample size 100 
were used for all countries, except for Germany where the critical values for sample size 50 were 
used. * denotes significant at the 10% level and ** denotes significant at the 5% level. 
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TABLE 2 

KPSS TESTS FOR (TREND) STATIONARITY 

Country 
Canada 

Variable 
y 

Test Statistic 
0.148" 

U.K. P 0.183 

Japan P 0.099 

U.K. q 0.192 

y = relative logged real GDP, p = relative logged price level, q = real exchange rate. 

The null of trend stationarity and test statistic r/. were used for relative GDPs and relative price 

levels. The null of stationarity and test statistic T] were used for the real exchange rate. Lag 

truncation was chosen to be eight as suggested by Kwiatkowski et al (1992). * denotes 
significance at the 10% level and ** denotes significance at the 5% level, based upon the critical 
values provided in Kwiatkowski. et al ( 1992). 
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TABLE 3 

JOHANSEN COINTEGRATION TESTS 

(H0: the cointegrating rank is zero) 

Countries 
CANADA 

Lags 
3 

'kmax 

13.95 
"'trace 
25.77 

Small Sample Correction: 

^"max Atrace 

11.30 20.88 

JAPAN 
Lags ,wmax 

19.97* 

A, trace 
26.65 16.18 21.59 

UK 
Lags 

4 

GERMANY 
Lags 

4 

FRANCE 
Lags 

3 

'•max 

23.66* 

''•max 

17.09 

24.22 

ntrace 
33.24* 

trace 
31.67* 

'trace 
43.28* 

19.17* 26.93' 

^max ^trace 
12.67 23.48 

^max ^-trace 
20.54* 36.71* 

ITALY 
Lags 

4 
"•max 

18.14 38.54" 14.70 31.22" 

For the zrax tests, HA: cointegrating rank = 1. For the zrrnrr tests, HA: cointegrating rank > 0. 
The small sample correction applied to the Johansen (1991) statistics, replace T  by T - n m ,  

where T is the number of observations, n is the number of variables in VAR system, and m is the 
number of lags. Critical values are from Osterweld-Lenum (1992). Lag is the lag length in VAR 
with differenced series. Superscripts * and ** denote significance at the 10%, and 5%levels, 
respectively. The lag lengths were determined by first using the likelihood ratio test and then 
increasing the lag length until residual tests confirmed no autocorrelation for the first 4 lags and at 
most 5% for the remaining lags in the residual series for VAR in levels. 
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Kolmogorov-Smirnov Tests for Normality of U.S - Canadian Real Exchange Rale Responses 

Shock 

Supply 

Demand 

Nominal 

Horizon 

4 

12 

24 

4 

12 

24 

4 

12 

24 

P-Value of K-S Test Statisitc 

5.00x10"' 

1.21xl0"3 

5.43X10™3 

9.71x10"-

1.07X10"15 

1.91X10"24 

1.39x10"" 

3.96 xlO"68 

8.99 xlO"236 

VAR lag length = 3 

TABLE 5 

Over-identification Tests for the Nominal Shock 

Countries 

Canada 784.162 

Japan 694.831 

United Kingdom 656.555 

Germany 531.957 

Italy 580.866 

The model is exactly identified with three restrictions. The proportional effect (one-for-one) 
of nominal shock on relative prices adds another restrictions making the model over-identified. 
Chi-square test has one degree of freedom. The values all have very small p-values. 
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DECOMPOSITIONS OF K-STEP-AtlEAD FORECAST ERROR VARIANCE 
IN REAL EXCHANGE RATES ATTRIBUTABLE TO EACH TYPE OF SHOCK 

WITH 90 PERCENT BOOTSTRAP CONFIDENCE INTERVALS 

Pari a: Exchange Rale Levels 
U.S. - Canada (Lag Length = 3) U.S. - France (Lag Length =3) 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0,000 
(0.001,0.388) 

0.909 
(0.450,0.976) 

0.090 
(0.003,0.354) 

1 0.093 
(0.003,0.461) 

0.904 
(0.429,0.978) 

0.003 
(0.002,0.304) 

4 0.016 
(0.004,0.406) 

0.920 
(0.498.0.977) 

0.063 
(0.003.0.221) 

4 0.126 
(0.009,0.523) 

0.869 
(0.426,0.974) 

0.004 
(0.004,0.198) 

12 0.048 
(0.004,0.0480) 

0.932 
(0.499,0.987) 

0.018 
(0.001,0.066) 

12 0.177 
(0.007,0.584) 

0.821 
(0.375,0.981) 

0.003 
(0.002,0.097) 

24 0.060 
(0.003,0.502) 

0.932 
(0.491,0.991) 

0.008 
(0.001,0.034) 

24 0.199 
(0.006,0.640) 

0.800 
(0.357,0.987) 

0.001 
(0.001.0.054) 

U.S. - Germany (Lag Lenglh = 4) U.S. - Hal; (Lag Length = 4) 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.002 
(0.004,0.564) 

0.960 
(0.234,0.966) 

0.038 
(0.002,0.576) 

1 0.264 
(0.009,0.724) 

0.729 
(0.160,0.954) 

0.007 
(0.002,0.494) 

4 0.015 
(0.010,0.574) 

0.970 
(0.312,0.956) 

0.016 
(0.007,0.381) 

4 0.337 
(0.020,0.766) 

0.657 
(0.167,0.945) 

0.006 
(0.005,0.340) 

12 0.086 
(0.017,0.690) 

0.909 
(0.272,0.964) 

0.005 
(0.003,0.156) 

12 0.371 
(0.020,0.815) 

0.626 
(0.168.0.959) 

0.002 
(0.002,0.178) 

24 0.137 
(0.013,0.748) 

0.860 
(0.223,0.976) 

0.003 
(0.002,0.078) 

24 0.380 
(0.020,0.828) 

0.619 
(0.166,0.966) 

0.001 
(0.001,0.096) 

U.S. - Japan (Lag Lenglh = 4) U.S. - U.K. (Lag Lenglh =4) 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.264 
(0.013.0.676) 

0.724 
(0.278,0.951) 

0.021 
(0.002,0.209) 

I 0.008 
(0.004.0.303) 

0.987 
(0.444,0.978) 

0.005 
(0.002,0.434) 

4 0.156 
(0.024,0.584) 

0.812 
(0.379,0.947) 

0.031 
(0.003,0.173) 

4 0.025 
(0.009,0.358) 

0.969 
(0.489,0.966) 

0.006 
(0.006,0.310) 

12 0.079 
(0.020.0.525) 

0.905 
(0.453,0.964) 

0.016 
(0.002,0.089) 

12 0.039 
(0.008.0.426) 

0.957 
(0.524,0.978) 

0.004 
(0.003,0 141) 

24 0.051 
(0.014,0.507) 

0.940 
(0.485.0.976) 

0.009 
(0.001,0.053) 

24 0.041 
(0.006,0.454) 

0.957 
(0.523,0.986) 

0.002 
(0.001,0.072) 
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Table 6, Pari b: Exchange Rate Differences 

U.S. - Canada (Lag Lenglh = 3) U.S. - France (Lag Lenglh =3) 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.000 
(0.004.0.380) 

0.998 
(0.445,0.966) 

0.091 
(0.006,0.365) 

1 0.084 
(0.008.0.435) 

0.913 
(0.437.0.962) 

0.003 
(0.005.0.350) 

4 0.029 
(0.021.0.394) 

0.895 
(0.458,0.929) 

0.076 
(0.017,0.297) 

4 0.084 
(0.026,0.415) 

0.888 
(0.426.0.910) 

0.028 
(0.021,0.369) 

12 0.039 
(0.024,0.390) 

0.877 
(0.443,0.921) 

0.083 
(0.019,0.317) 

12 0.087 
(0.030,0.417) 

0.883 
(0.414,0.904) 

0.031 
(0.025,0.382) 

24 0.039 
(0.024.0.400) 

0.877 
(0.442,0.921) 

0.083 
(0.019,0.316) 

24 0.087 
(0.030,0.420) 

0.883 
(0.414.0.903) 

0.031 
(0.025,0.387) 

U.S. - Germany (Lag Lenglh - 4) U.S. - Hal; (Lag Length = 4) 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.0021 
(0.007.0.553) 

0.934 
(0.204,0.938) 

0.064 
(0.005,0.621) 

1 0.242 
(0.013,-692) 

0.751 
(0,161.0.935) 

0.007 
(0.005.0.496) 

4 0.012 
(0.037.0.514) 

0.904 
(0.217,0.872) 

0.0p4 
(0.032,0.607) 

4 0.246 
(0.053,0.651) 

0.727 
(0.170.0.876) 

0.027 
(0.018,0.490) 

12 0.034 
(0.063.0.519) 

0.879 
(0.217.0.830) 

0.005 
(0.041,0.556) 

12 0.244 
(0.057,0.642) 

0.725 
(0.175,0.860) 

0.031 
(0.027,0.475) 

24 0.036 
(0.065.0.521) 

0.877 
(0.212,0.830) 

0.086 
(0.042,0.554) 

24 0.244 
(0.057,0.641) 

0.725 
(0.178.0.859) 

0.031 
(0.027,0.474) 

U.S. - Japan (Lag Length = 4) U.S. - U.K. (Lag Lenglh =4) 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.277 
(0.036,0.674) 

0.701 
(0.276,0.920) 

0.021 
(0.004,0.218) 

1 0.047 
(0.011,0.320) 

0.948 
(0.005.0.428) 

0.004 
(0.005.0.428) 

4 0.281 
(0.097.0.631) 

0,684 
(0.299,0.835) 

0.035 
(0.017,0.223) 

4 0.061 
(0.035,0.339) 

0.889 
(0.367.0.886) 

0.049 
(0.032.0.482) 

12 0.283 
(0.105.0.625) 

0.675 
(0.296,0.818) 

0.042 
(0.021,0.243) 

12 0.066 
(0.042.0.346) 

0.882 
(0.354,0.868) 

0.051 
(0.040,0.483) 

24 0.283 
(0.104,0.624) 

0.674 
(0.296,0.818) 

0.043 
(0.021,0.243) 

24 0.066 
(0.042.0.343) 

0.882 
(0.354,0.868) 

0.051 
(0.041,0.483) 
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Table 6, Pari c: Sensilivily to Lag Length Selection 

U.S. - Canada, Lag Lenglh = 4 

Exchange Rale Levels: Exchange Rale Differences: 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.034 0.963 0.005 1 0.033 0.962 0.004 
(0,002.0.402) (0.527.0.988) (0.001,0.221) (0.005.0.393) (0.520.0.976) (0.002.0.233) 

4 0.135 0.861 0.004 4 0.151 0.831 0.017 
(0.008.0.534) (0.420.0.977) (0.003.0.136) (0.046,0.475) (0.423.0.891) (0.017,0.229) 

12 0.162 0.836 0.001 12 0.155 0.818 0.027 
(0.008,0.609) (0.382.0.985) (0.001,0.049) (0.058,0.473) (0.406,0.871) (0.026,0.364) 

24 0.166 0.833 0.001 24 0.155 0.818 0.027 
(0.006,0.632) (0.363.0.989) (0.001,0.024) (0.058.0.474) (0.405.0.870) (0.026,0.264) 

U.S. - France, Lag Length = 4 

Exchange Rale Levels: Exchange Rale Differences: 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shocks 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

1 0.288 0.690 0.022 1 0.249 0.723 0.023 
(0.008,0.607) (0.252,0.957) (0.003,0.505) (0.016,0.550) (0.282.0.927) (0.007,0.522) 

4 0.369 0.617 0.015 4 0.243 0.725 0.032 
(0.017.0.677) (0.250,0.904) (0.006,0.387) (0.049.0.520) (0.282,0.854) (0.027,0.486) 

12 0.393 0.601 0.006 12 0.242 0.720 0.038 
(0.018.0.732) (0.253,0.953) (0.004,0.229) (0.060,0.511) (0.274.0.826) (0.036,0.487) 

24 0.390 0.606 0.003 24 0.242 0.720 0.038 
(0.014,0.749) (0.240,0.968) (0.002,0.150) (0.061.0.5 II) (0.273.0.823) (0.036,0.487) 
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Figure l.a. 

Accumulated Impulse Responses k Quarters After Shock with 90% Confidence Intervals 

Canada (VAR lag = 3) 
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Figure l.b. 

Accumulated Impulse Responses k-Quarters After Shock with 90% Confidence Intervals 

United Kingdom (VAR lag = 4) 
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Figure l.c. 

Accumulated Impulse Responses k-Quarters After Shock with 90% Confidence Intervals 

France (VAR lag = 3) 
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FIGURE 2 

Robustness of Impulse Responses to VAR lag specification 

Cumulative Response of U S. Real Exchange Rate to Nominal Shock: 
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FIGURE 3 

Robustness of Impulse Responses to Sample Period 

Cumulative Response of U S. - Canadian Real Exchange Rate to Positive Supply Shocks 
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FIGURE 4 

Histograms of Bootstrap Forecast Error Variance Decompositions at 24 Quarter Horizon 
for Canada 
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CHAPTER 3 
STRUCTURAL VECTOR ERROR CORRECTION MODELING 

OF 
REAL EXCHANGE RATES: 

CAN WE DO BETTER? 
EVIDENCE FROM THE G-7 COUNTRIES 

1. Introduction 

Identifying and measuring the sources of real exchange rate fluctuations has been a serious 

challenge for empirical macroeconomics. Previous studies of the sources of real exchange rate 

fluctuations have concluded that real demand shocks account for most of the variance of real 

exchange rates, in the short-run as well as in the long run (Clarida and Gali, 1995; Weber, 1997: 

Chadha and Prasad, 1997). Diverging results are presented by Rogers (1999), Eichenbaum and 

Evans (1995) who document a larger influence of monetary shocks, Alexius (2000) who 

concludes, in contrast to other findings in the literature, that supply shocks have a larger relative 

influence, and Karstensen and Hansen (1997) with the claim that monetary shocks are 

predominant. 

Another notable feature of the literature is that most studies model only changes in real 

exchange rates and the fundamental variables. Some recent exceptions are Karstensen and 

Hansen (1997), and Alexius (2000). The presence of long run relationships between the levels of 

the variables is either rejected (as in Clarida and Gali, 1995; and Rogers, 1999) or not 

investigated (as in Weber, 1997)'. In Chapter two I identify strong cointegration relationships 

between real exchange rate and other variables in Clarida and Gali (CG) model using a slightly 

different time period in an extended set of countries. There seems to be a gap between the 

dominant empirical literature and related studies of long run real exchange rate determination. 

Most papers on the latter field do find long run equilibrium relationships between real exchange 

rates and, for instance, relative productivity. MacDonald (1998) provides a comprehensive 

survey. 

In this paper, I expand on standard structural vector autoregressions (SVARs) by bringing 

cointegration effects into the picture in a simple four-variable vector autoregression (VAR) 

characterized by cointegration. Data on real US output, real exchange rate, real Ml money 

balances and US treasury-bill interest rates comprise the structural vector error correction (SVEC) 

model that includes the money demand as the cointegrating vector. My data spans the same time 

frame in Chapter two and is quite similar to the stylized paper by CG (1995). Using knowledge of 
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cointegration rank and qualitative expectations of the effects of various economic shocks on the 

variables in line with CG (1995), and Crowder, Hoffman and Rasche (1999), I identify distinct 

"real" and "nominal" innovations that dictate the long run behaviour of the variables. I also 

examine the explanatory power of permanent innovations that are orthogonal to each other. One 

of the permanent shocks displays all the characteristics of a technology or "supply" innovation, 

while the other is interprétable as a "demand" side impulse. The permanent nominal shock bears 

the imprint of an innovation in aggregate inflation expectations. The identifying constraints on the 

permanent shocks are the same as in CG in that nominal shocks do not affect the real output and 

the real exchange rate in the long run, and demand shocks do not have a long run effect on real 

output. The results suggest that of the three permanent innovations on real exchange rates, 

demand shocks dominate at most horizons for G-7 countries. 

The permanent supply shock is clearly linked to the technical capacity of the economy 

governed by productivity innovations, while the permanent demand shock exhibits movements 

similar to the changes in government expenditures. The permanent nominal innovation appears 

closely linked with movements in aggregate inflation expectations taken from survey data. 

Finally, transitory innovations are a "catch-all" term representing all types of temporary 

innovations on the variables in SVEC system. 

I extend the application of War ne (1993) in an environment with emphasis on real exchange 

rates while confirming CG that demand shocks dominate real exchange rate fluctuations. My 

decomposition also justifies the concerns raised in Chapter two that non-modeled cointegration 

effects may be what is driving the poor performance of structural VARs and also what may be 

behind the commonly identified "perverse sign effect" of supply shock to the real exchange rate 

in the post-Bretton Woods floating exchange rate period. I examine the robustness of the SVEC 

model to different lag selection criteria and show that "perverse sign effect" of supply shock may 

be related to different choices in lags that may create cointegration effects, and hence changes in 

impulse responses. My analysis reveals both the importance of incorporating cointegration into 

structural decompositions as well as how closely the stochastic components identified in the 

process compare with data external to my simple model. The main contribution of the paper is 

that it provides a SVEC model of real exchange rates in the floating exchange rate period for G-7 

countries while retaining the same set of identifying assumptions of CG to identify supply, 

demand and nominal shocks. My VEC model differs from other studies with the cointegrating 

vector being defined by an economic behavioral relationship, money demand equation. 
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In section II, I set up a SVEC model that can be characterized by long run money-demand 

equation. Shock identification in a cointegration system is illustrated and identifying assumptions 

for the permanent shocks are explicitly spelled out. Section III provides the empirical analysis for 

the time series properties of the variables in the VAR system and for the cointegration rank and 

depicts the estimated parameters for the money demand equation. Section IV presents the impulse 

responses from the SVEC model of real exchange rates, their variance decompositions and 

discusses issues related to the robustness of impulse responses to lag length selection. I also 

compare the identified common stochastic trends with data that are external to the original four-

variable specification. Section V summarizes my findings. 

2. Identification of Common Trends in a Cointegrated System 

Linear time series models are generally specified in terms of variables that can be observed 

and purely nondeterministic and serially uncorrected errors. Accordingly, they can be estimated 

with standard tools. In contrast, a common trends model consists of a vector of trends and a 

vector of stationary variables, where neither component can be observed as an individual factor. 

Without loss of generality, let {x,} be a vector of time series such that 

x ,  =  x?  +  x ;  (1 )  

Here, x f  represents a vector of trends of x t , while x '  is a stationary residual. 

King Plosser, Stock and Watson (KPSW) (1991) and Stock and Watson (1988) show that 

there is a simple duality between the concepts of cointegration and common trends. In particular, 

the cointegrating restrictions determine the number of independent trends and how a vector of 

observed variables is related to all the independent trends. That is, if is a cointegrating vector, 

then 0Txf =0 for 0Txt -fiTx\ to be stationary. These restrictions, however, neither specify 

nor suggest whether a certain trend is related to, e.g. technology shocks, government expenditure 

shocks, money shocks. To be able to make such interpretations it is necessary to consider further 

identifying assumptions. In this section, I devote the first part to the mathematical structure of 

cointegrated time series with various representations. In the second part I illustrate the restricted 

VAR representation. The third part lays out the common trends representation. The fourth part 

identifies permanent and transitory innovations. The fifth part lays out a structural vector error 

correction model of real exchange rates and the necessary identifying assumptions. 
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2.1. The Unrestricted VAR and VEC Representation 

Let {.v } denote an n dimensional real valued discrete vector time series that is driven by 

k < n common stochastic trends. Then. I can write the data generating process (DGP) as: 

X, =.r0 + 4T, +*(L)v, (2) 

Here. L is the lag operator, i.e. L J x ,  = .r,_; for any integer j. The n dimensional vector sequence 

{vr} is assumed to be white noise with f[v,] = 0 and E[vtvf ] = In, the nxn identity matrix. 

Furthermore, the nxn  matrix polynomial O(L) = ]T<tis finite for all L  on and inside the 
;=i 

unit circle and, without loss of generality, I assume that x 0 , the constant vector containing the 

initial values of x is stationary. In other words. 0(Z.)vt is jointly (wide-sense) stationary. 

The nonstationary (permanent) and stationary (transitory) components of x t  are captured by 

xVt! and <I>(L)vt, respectively. If the trends are linearly deterministic, then r, =//f, i.e. 

r, - r,_, = //, where // is a k-dimensional vector of constants. The idea of linearly stochastic 

trends, on the other hand, can be operationalized by modelling r, as a vector of random walks 

with drift: 

r, =// + rM+<z> t  (3) 

where {<pt} is a white noise sequence with E[(pl] = 0 and E[ <ptip* 1 = lk. Hence, <p is a k-

dimensional vector of structural (independent) shocks with permanent effects on x if Y #0. In 

relation to the decomposition in (1) I find that the common trends model in (2) and (3) specifies 

that 

x, =-r0 +»(£)v, 

(4) 
.vf = Y r n +ut  +  y .Ç j  

j=i 

Furthermore, whenever the number of common trends, k. is less than the number of variables, n, 

there are exactly r = n -k linearly independent vectors which are orthogonal to the columns of 

the loading matrix Y. In other words, there exists an nxr  matrix P such that 0 T x t
p  =0 for all 

t so that y3rxr is jointly stationary. The common trends model in (2) and (3) has some appealing 

properties. First, the trends include a stochastic element, which is consistent with the notion that 
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some shocks to an economy are persistent. Second, there may be fewer trends than variables so 

that the model allows for steady state relationships between the variables. In this framework, 

these steady states are described by the matrix p. If <p, and v, are correlated it is possible for the 

trend disturbances to influence not only growth but also fluctuations about the trends. The 

approach I shall take in this paper implies that the first k elements of v, are given by <p,. To 

allow for deterministic trend shifts (3) can be reformulated as: 

r, =// + //'£>, + rM +<p, (5) 

Here. D,  is a d-dimensional vector of zero-one dummy variables with a finite number of 

switches. In terms of equation (5), fi'D, may represent both temporary and permanent 

deterministic changes in the drift component (// + //*£>,), i.e. both the crash' and changing 

growth' phenomena considered by Perron (1989). The rest of the analysis is based on the 

reformulation (5). 

To determine how I can estimate the common trends model, let us assume that {xr} is 

generated by the unrestricted vector autoregression (VAR) or order p: 

A(L)x ,  =  p  +  p 'D ,  +e ,  (6) 

where A(L)  =  /„  A } L '  . and {f,} is a white noise process with E{e t ] = 0 and E[eteJ] = £., 
;=1 

a positive definite matrix. The nxn  matrix polynomial A(L)  satisfies det[A(L)] = 0 if and only 

if \L\ > 1 or L = 1 so that explosive processes are ruled out. Moreover, the only form of 

nonstationarity which is possible is due to unit roots. In other words, if {x,} is generated by (6), 

then the process is integrated or order d, where dis a nonnegative integer (Johansen, 1991). 

If {xf} in (6) is cointegrated of order (1,1) with r cointegration vectors I know from 

Granger's Representation Theorem (CRT) that (i) rank [Ad)] = r. and (ii) A(l) = apT (see Engle 

and Granger (1987)). The matrices a and (3 are nxr and the columns of /? are called the 

cointegration vectors. Under the assumption of cointegration it follows by CRT that an alternative 

form to (6) is: 

A' (L )Ax t  =p +  p 'D c -  A(l)xt_, + £, (7) 
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A* (L) = /„ - £ A*, where A* = -^ A; for / = 1,2 p -1 

Here, A s 1 - Z. is the first difference operator, and A(l) = /„ - ̂  A;. The relationship between 
;=i 

A(L) and A * (L) is given by 

2'  
i=l y=*+I 

The representation in (7) is widely known as vector error correction (VEC) model. 

Cointegration implies that the r dimensional process xt} is jointly stationary, if I regard the 

cointegration vectors as describing a steady state or long run equilibrium for x, then the term 

a(jJT.rf_, ) represents the correction of the change in x, due to last period's long run equilibrium 

error. Note that the major difference between equations (6) and (7) is that the latter representation 

is conditioned on cointegration while the former is merely consistent with unit roots. 

2.2. The Restricted VAR Representation 

Campbell and Schiller (1988) show that it is straightforward to rewrite the VEC 

representation as a restricted VAR system when n = 2and r = l. Theorem 1 in Warne (1993) 

shows that this result can be generalized. Let M be an nxn nonsingular matrix given by 

[S i  fi]T where S k  = and = Also let a  be an nxn  matrix equal to [0 a] ,  while 

the nxn  matrix polynomials D(L )  and Dl(L) are 

D(L)  =  
l t  0 

0 (1 -L)Ir  

Dj_(L) — 
(1 ~L)Ik 0 

0 /, 

Next, let z, = /3rx,. 6 = Mp, 9' = Mp' and tj, = Me,. I can now derive a VAR representation 

for x, which is conditioned on the cointegration vectors. I shall call this representation a 

restricted VAR (RVAR). Premultiplying both sides of (7) by M I get 

MA'(L)Axr =d +  0 'D t  -Maz t _ x  +r j t  

Define the n dimens iona l  s t a t i onary vector y, from yt=Dx(L)Mxt. Noting that 

(1 - L)In = D(L)Dl(L) and az, = or*y,, [ can express this system as: 

B(L)y t =â +  0 'D t +r) r  (8) 

where B(L)  =A/[A'(L)M"1D(L) + a 'L]  
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Note that 6(0) = /„, and that the matrix polynomial B(L)  is at most of order p. Since 

det [S(L)] = 0 has all solutions outside the unit circle and Dx(l) has rank r, it is clear that A(l) has 

also rank r. The following version of CRT in Warne (1993) turns out to be very useful in the 

coming analysis of common trends: 

Theorem: Suppose x ,  is generated according to (6) with rank [A(1)J = r  < wand 

det[fl(L)]= Oif and only if |£| > 1, then y , , z ,  and Ax, is integrated of order zero. In addition 

A(L)  =  M B(L)D X (L )M (9) 

and 

C(L) = M~ l  D(L)B(L)~ [  M (10) 

where the Wold moving average representation of x t  is 

Ax t  =6+C(L) [£ ,  +p 'D , ]  and ô  = C( l ) {x  (11) 

Note that the rank condition ensures that x t  is not integrated of order zero. The determinant 

condition, on the other hand, means that yf in (8) has an invertible moving average 

representation and. accordingly y, and thus z,, is integrated of order zero. The rank condition 

implies that xt is integrated of order one. Premultiplication by A/-1 in (8) and using the 

definitions of v,, d and rj, gives us the expression in (9). Similarly, C(L) is obtained by 

premultiplying 

y t =B( \ r l 6+B(Ly l r } r  

by M D( L) and using the same definitions and the p rope r ty  t ha t  (1  -  L) I n  = D{L)D ±  (L ) .  

In a sense, the theorem summarizes all I need to know about the reduced form mathematical 

properties of a vector time series which is cointegrated or order (1,1) with cointegrating rank r. 

The  ma t r ix  po lynomia l  B{L)  cap tu re s  t he  gene ra l  ' s ho r t - run '  dynamics ,  whe reas  {D ± (L ) ,D(L) )  

and M represent integration and cointegration, respectively. The important result here is that I 

have found a simple mathematical connection to the Wold Moving Average (MA) representation. 

Hence, the restricted VAR in (8) is very well suited for estimating a common trends model. 

The unrestricted VAR in (6), the VEC representation in (7), and RVAR in (8) are all systems 

of linear stochastic difference equations. The mathematical solution to the three equations is 
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given by (11). Thus, once the RVAR representation (8) has been estimated, the Wold MA 

representation (11), and hence, impulse responses can easily be obtained. 

However, in order to construct y, I need first to know the cointegration rank rand the 

cointegration vectors in the matrix f3. These parameters can be estimated by Johansen's (1991) 

maximum-likelihood procedure. The starting point is then the representation (7). Under the 

hypothesis of cointegration A(l) will have a reduced rank r. Johansen shows that it is possible to 

obtain estimates of the cointegration rank r and of the vector spaces spanned by the columns of 

a and (3. In other words, I can estimate a and 0 up to a nonsingular transformation. 

From the theorem it follows that the lag order of the restricted VAR in (8) is never greater than 

that of the unrestricted VAR in (6). In fact, unless all elements in the final r columns of the 

matrix Ap are zero the restricted VAR is also of order p. Given /?, all other parameters can now 

be obtained through least-squares estimation of the RVAR representation. Alternatively, I can use 

Johansen estimates of A*(L)and a to calculate the B(L) coefficients. Both procedures yield 

identical values for all parameters. 

p 

Let us consider B(L)  =  /„  -  Y B k L  . The theorem establishes that the matrix C(l) is equal to 
m 

M , where F( 1) is the inverse of 5(1). It then follows that if M, 

Q  =  M  Z M t  =£[//,//,r ] and S( 1) were known, so would £ and C(l) be. 

2.3. The Common Trends Representation 

Although the Wold representation in (11) is in MA form and thus suitable for analyses of 

impulse response functions, it has no clear economic interpretation since the disturbances £ are 

not structural. If I want to investigate the effects of a structural disturbance, e.g. one of the 

permanent shocks <pt in the common trends model (3) and (4), I will have to put additional 

restrictions on my multivariate time series model. To see how the common trends parameters and 

the permanent shocks are identified, substitute recursively in (11) to obtain 

x, =x0 +<?f + C(L)(l + ZL + L2 +... + L')[£l +p'Dt] (12) 

which in turn may be written as 

x, =x0 + C(l)£ +C\L)[£t + p'Dt] (13) 
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The n-dimensional vector 4, >s a random walk with time-varying drift according to 

Ç,  =  p  +  p 'D ,  +  £_ ,  +£ ,  

The relationship between the polynomials C' (L )  =  Y^C 'L  and C(L)  is given by C* = - . 
i=l j=i*l 

The long run behaviour of xthus will be dominated by the nonstationary, random walk 

component C(l)ç,. But since pTxt is stationary it must hold that pTC{\) =0, i.e. C(l) must be 

of less than full rank. Specifically, from the definition of C(L) under the equation (11) I know 

that rank[C(l)] = rank[D(l)] = n-r. This means that it is possible to rewrite (13) in terms of 

reduced number of independent trends, i.e. as a common trends model like (3) and (4). Stock and 

Watson (1988) derive the common trends model from the Wold representation (11) under the 

as sumpt ion  o f  k  common  t r ends ,  and  show tha t  t he re  a r e  r  co in t eg ra t i on  vec to r s ,  k  =  / i  -  r .  

In order for /3Txt to be stationary the common trends coefficients Y in equation (3) must 

satisfy the following restrictions: 

/?rY=0 (14) 

Given f t , these cointegration restrictions provide rk  =  {n -  k )k  equations which can be used to 

determine the nk parameters of Y . Additional restrictions may be derived from (3), (4) and 

(13), which imply that ô = C(\)p = Y// and C(\)et = Y<ps for all t. It follows that 

YrY = C(l)IC(l)r (15) 

Proceeding along the route suggested by KPSW (1991), I can write Y in the case of k  common 

trends as 

W-Yo/r (16) 

where Y0 is an nxk  matrix with parameters chosen so that Y0 =0. A possible choice for 

Y0 would be Sk. Using the relationship (15), and (16) I have that 

= (< VQ )"' Y0C(l)ZC(l)r Yq (Y0
r Y0 )"' (17) 

The right hand side of equation (17) is a k x k  positive definite and symmetric matrix with 

k(k +1) / 2 unique parameters. I cannot, however, solve for k uniquely without making some 

additional assumptions. For the above system of equations exactly k(k + l)/2 parameters can be 

uniquely determined, e.g. from a Choleski decomposition. It should be noted that although the 
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Choleski decomposition of n  indicates a recursive structure for the influence of r, on x r , the 

choice of T0 actually determines how the trends affect x,. Thus, Y need not represent any 

recursiveness for the common trends model. To summarize this discussion, to identify the 

nk parameters of ¥ I first use the rk restrictions in (16). Hence, there remains to determine k2 

parameters. Second, I can solve the k(k +1) / 2 independent equations in mrr if % is known. 

Accordingly, in addition to (16), k(k -1) / 2 restrictions must be imposed on Y to achieve exact 

identification. These additional constraints should be motivated by economic theory since they 

cannot be tested. 

2.4. Identification of Permanent and Transitory Innovations 

My objective in this section is to be more specific about identification of all parameters in the 

common trends model. Two definitions and some new notation is introduced to minimize 

ambiguities. 

Let T be any nxn  nonsingular matrix such that r2Xris diagonal. The matrix 

/?(1) =C(l)r-1 is called the total impact matrix. 

Definition 1. An nxn  matrix F is said to identify a common trends model if (I) it is 

uniquely determined from the parameters of the model in equation (7), (ii) the total impact matrix 

is given by #(1) =[Y o]. 

Definition 2. An innovation v,f is said to be permanent (transitory) if the i:th column of the 

total impact matrix is nonzero (zero). 

From these two definitions it follows that if an nxn  F identifies a common trends model, 

t hen  t he  pe rmanen t  i nnova t ions  a r e  t hose  t ha t  a r e  a s soc i a t ed  w i th  t he  common  t r ends .  Le t  nxn  

nonsingular matrix F be chosen so that (i) the permanent innovations are equal to (p,. (ii) the 

permanent and the transitory innovations, y/,, are independent, and (iii) the transitory innovations 

are mutually independent. Ï then have that 

Axt = S + C(L)e, = S  +  R iDv ,  (18) 

where R(L)  =C(L)F-1, vr=Fft, and £[vtvf] = /n. The component R(L)v t  is called the 

impulse response function of Ax,. 

In order to derive a suitable matrix F, it may first be noted that 
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v, = 
>r" X'  

Y ' .  Jr. 
e,=re t  (19) 

where rt and Fr are k x n ,  and r x n  matrices, respectively. It was already established that 

Tgp, =C(l)et and that T as well as C(l) had rank equal to k. hence, it follows that the 

permanent innovations may be described by 

<pt =(Tr4')"1TrC(l)ft (20) 

and, accordingly, the top k x n  matrix rt is (t7^)" xPrC(l). 

To find a matrix Tr which satisfies the conditions (ii) <p, arid y/s are independent, and (iii) 

the components of y/t are mutually independent, I first consider the condition (ii). Evaluating the 

covariance between the permanent and transitory innovations, I find that 

] = (4'r4')" ,4'rC(l)5:rr
r  (21) 

For this k x r  matrix to be zero, it seems natural to let Fr include I"1. That allows us to focus on 

the matrix C(l). which is known to have reduced rank. From linear algebra it is well known that 

there exists exactly r linearly independent vectors which are orthogonal to the rows of C(l). 

Letting I~, = H r~L'x, I am therefore seeking an rxn matrix H r  such that C{ \ )H T
r  =0. One 

possibility is to consider the space spanned by the columns of a. In fact, the following 

relationship may be established 

a  = M- x B{ \ )D L {X)Mp( j3 T  pY  (22) 

Premultiplying a by C(l), I find that 

C(l)a = (mD(1)F(1)Mfi(l)Dx(\)Mp(pr
pY  j = 0 

Let H r  -Q ' 1  C T  .  where Q is an rx r  matrix, £ = a{Ua)~l, and U is an rxn matrix chosen 

so that Ua is invertible (the specific use of U will become clearer in the attempt to identify the 

transitory disturbances). The covariance matrix for the transitory innovations is given by: 

Ety,tf\ = Q-lÇT?TlfaTY (23) 
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A convenient normalization for the mutual independence of the transitory innovations is then to 

let E[y/tiff]] = lr. Q can be chosen as the Cholesky decomposition of . The transitory 

innovations are now determined from 

(24) ¥,  =Q- l £ T Z- l e ,  

Accordingly, the matrix Fr is given by ^rX"V so that the matrix F becomes 

r= (4'r4')r l4'7"C(l) 

<2~'<rV 
(25) 

rr-1 = 

It should be noted that the k  linearly independent rows of Ft are linearly independent to the r  

linearly independent rows of Fr. These properties imply that F is of full rank. 

The total impact matrix was identified as 

K(1) = C(1)F"1 =[¥ 0] (26) 

Let us partition the inverse of F intoF™1 = [Ff F* ), where Ff and Ff are nxk  and 

nxr matrices, respectively. Postmultiplying F in (25) by this expression for F"1,1 obtain: 

(4'r4 ,)"14'rC(l)r; (vFr4')" l4'rC(l)r; , 

e"Vrz™'r; e"Vrz- ,r; J " 

Letting Ff =ç{qT) and Ft* =IC(l)r4'(4,r4>) I have found the inverse of F. Substituting 

for these relationships in (26), I have 

R( \ )=[R( \ ) k  *(l)r]= C{ \ ) ÏC (\)Tv{vTv)~l C(1)c(qtY  

It can easily be seen that rt(l)t =C(l)ZC(l)r4'(4'r4')"1 =Y since C(1)YC(1)^" = 4"Fr, while 

R{  1) r = 0 due to the fact that C(l)£" = 0. Using (19) it can be seen that FLFr = /„ . 

In order to derive the common trends model in (2) let us rewrite (13) as 

xr = x0 + C(l)ç, + C'  (L ) (£ t +p '  D t )  (27) 

For this reduced from common stochastic trends representation I have that 

ç, =/? + /) D, + ç(-l + e, and S = C{\)p. In terms of equation (1) this means that 



www.manaraa.com

74 

XS, =xQ +C\Q(£, +P'D,) 

X? =C( 1) 

For the trend components in I have that 

#o +(p+p 'D , ) t  +  ̂ £ j  
/=i 

(28) 

cm, =/?(i)rç, =/?(i) r^o + r(/>+/7*D,)r+Xv; 
>=i 

= Trf (29) 

In (29),/y = rt/7, u  -  Y k p ' .  Also from the stationary components I get 

C' (L ) {£ ,  +  p 'D , )  =  C ' (L)(r~\'l + /?*D,)sothat 4>(L) = C*(L)r"'. 

The matrix U can be used to give the transitory disturbances and economic interpretation. 

Suppose I want to identify the transitory innovations based on their contemporaneous relation to 

Ar (or to x). In that case with/?(0) = F-1 it follows that I should impose restrictions on Y* . To 

properly identify the transitory disturbances one needs r(r-1)/2 restrictions. F* is an nxr  

matrix, where rk  restrictions come from C{ \ )H T
r  =0and r ( r  +1)/2 restrictions come from (23). 

Given a  and Q the matrix U can always be chosen so that r ( r  -1) / 2 in a(Ua)~ l  (Q T  )-1 is zero. 

Now suppose  Q i s  l ower  t r i angu la r  ( due  t o  Cho ie sky  decompos i t i on )  and  tha t  n— 4  and  r  =  2 .  

Letting q\* and Ç t j  denote the (i,j):th elements of Q~ l  and Ç respectively, I have that 

r; = 

Ç ii<?n 
;=i 

Cz iQu  
>=1 

£ 3l<?31 Z^3,^2> 
;=I 

C 41 9 41 
>=1 

To exactly identify the transitory innovations I need to consider one restriction on this matrix. A 

simple procedure is to let a particular element of Ç to be zero, say Çu. Then, the first transitory 

innovation has a zero contemporaneous effect on the first element of Ar One can let the 

2x4 matrix U be given by a zero-one matrix to satisfy the conditions for Ç. 
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2.5. A Structural Vector Error Correction Model of Real Exchange Rates 

I specify a parsimonious four-dimensional VEC model with x, = [y, q, mp, i,f, 

comprising of real gross domestic product (>•,). real exchange rate (qt) defined as foreign good 

price in terms of domestic goods, a measure of real balances (mp,), where I use Ml as the 

money supply and GDP deflator to arrive at the real balances, and nominal interest rates (/, ) 

taken as the three month annualized rates for the treasury-bill. All variables are expressed in logs 

except the interest rates. Real gross domestic product (GDP), interest rates and real money 

balances are domestic values for the United States (US). Real exchange rate is defined as 

q ,  =— (30) 
P 

where e  is the exchange rate, domestic currency per unit foreign currency: p  '  and p  are foreign 

and domestic consumer price indices, respectively. 

One of the long run relations can be expressed as a standard money-demand relation that 

links real balances to real output and a measure of the opportunity cost of maintaining liquidity. 

In this VAR system. I expect to have at least one cointegrating vector for the semi-log money 

demand equation.: 

mp, = 6X y, -d 2 i ,  +  £ ,  :  0 l , û z >Q (31) 

The variables comprised in (30) and (31) are assumed to be governed by processes that 

exhibit stochastic trends, while the error term, £, can exhibit considerable persistence but is 

assumed to be stationary, so that (31) represents a long run or a cointegrating relation. 

I also add a break based on prior knowledge of historical events. The break corresponds to the 

modification of U.S. monetary policy at the fourth quarter of 1979.3 

In this four-dimensional system with one assumed cointegrating relation, there exist three 

stochastic tends and one transitory disturbance.4 The transitory innovation encompasses all sorts 

of shocks to x, with no permanent effects. Since there is only one transitory shock, there is no 

need to consider contemporaneous restrictions to identify the transitory shock, that is what is left 

out after all permanent shocks are accounted for. The permanent shocks, or the common 

stochastic trends, can be exactly identified after I impose three restrictions on the long run effects 

of the structural shocks on the variables in the VEC model as in Blanchard and Quah (1989, BQ 

for short). I name the three permanent shocks as supply, demand, and nominal shocks. The long 
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run restrictions are imposed such that (i) nominal shocks have no long run effect on real output 

and real exchange rate, and (ii) demand shocks have no permanent effect on real output. With 

those restrictions x,p in (4) becomes 

y f  "*u 0 0 " 
r,, 

q f  2i *22 0 
(32) 

mp? 
= Yr, = 

*31 *32 *33 r , 
(32) 

.*4, *42 *43. 

where 4^ denote unrestricted elements, and r, ,, ri t, rn, are the supply, demand and nominal 

trends respectively. From Y it can be seen that real output is driven only by the productivity 

trend, real exchange rate by both productivity and demand trend, and the remaining real balances 

and interest rates by productivity, demand and nominal trends. In this way common trend 

parameters are exactly identified. 

3. Estimation 

I use quarterly observations for the G-7 countries (with U.S. as the home country) from 

1973:2 to 1992:4. The data samples roughly correspond to the samples used by Clarida and Gali 

(1995) and I have expanded the set of countries by adding France and Italy5. It is assumed that 

y,, q, nipt, and i, are unit root processes. Unit root tests are reported in Table 1. Both the 

Augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP) fail to reject the unit root null 

hypothesis for real output, real money balances and interest rate for U.S. As for the real exchange 

rates only for U.K. ADF rejects unit root at 10% significance level. 

I also performed unit root and stationarity tests for the differenced version of the series. The 

results indicate that each series appears to have at most one unit root. Thus, my results suggest 

that it is reasonable to treat all variables as having a single unit root, and thus leaving scope for 

stationarity through a possible linear combination. 

Johansen brake trace tests for the number of cointegrating vectors in the system 

{y, are contained in Table 2.6 The conventional trace critical values are also included 

to provide a comparison. However, they are not valid in the presence of breaks. The Akaike 

Information Criteria (AIC), Hannon-Quinn Test (HQ), and the Likelihood Ratio Test (LR) were 

applied to the four-dimensional unrestricted VAR in (6) to help determine the maximum lag 

length for the cointegration tests.73 HQ consistently select fewer lags and provides a more 
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parsimonious model. For all countries, I reject the null of no cointegration at both 5% and 10% 

significance when HQ lag selection is adopted. The AIC and LR tests consistently select the same 

lag length. However, some lag lengths border my VEC to more cointegrating vectors. The tests 

using the HQ criterion strongly conclude that Canada, United Kingdom and Italy have only one 

cointegrating vector regardless of the lag choice. At the 10% significance level France has three 

and Japan has two cointegrating vectors with AIC and LR lag selections. The AIC tests for 

Germany conclude at 90% significance that the rank of A(l) is four which would mean all the 

variables are stationary which contradicts unit root tests. However, for Germany the assumption 

of only one cointegrating vector for a lag length of three may not be a good choice for the VEC 

model. The lag selection criteria suggest different values for the VEC model, in which case it is 

common practice to prefer Hannan-Quinn criterion. In addition HQ criterion results in stronger 

conclusions for the existence of only one cointegrating vector for most of the countries in my 

sample. Therefore, the rest of the analysis is carried out with a maximum lag length of two for 

Canada and one for all other G-7 member countries, under the assumption that the cointegrating 

rank is one.9 

After identifying the existence of one cointegrating vector in line with my prior expectations, 

I test for stationarity and exclusion of the variables in the VEC model. Further supporting unit 

root tests, I reject stationarity of the variables for all countries. I expect to exclude the real 

exchange rate from the cointegrating vector as I expect to identify the money demand equation. 

However, only for Japan and United Kingdom can I exclude the real exchange rates from the 

cointegrating vector regardless of the significance level used. As for France and Italy real 

exchange rate can be excluded only at 5% significance, and Germany and Canada both include 

the real exchange rate in the cointegration space at 5%. For the common trend decomposition, I 

stick with my prior expectations and exclude the real exchange rate from the cointegration 

space.10 

Table 4 outlines the estimated coefficients for all variables. Two separate cases are shown: (i) 

real exchange rate is part of the cointegration space, (ii) real exchange is excluded from the 

cointegrating vector. I have the correct signs of the coefficients in the money demand equation 

(31). An increase in real output increases real balances and higher interest rate lowers money 

demand. Real exchange rates move in the same direction with real output in the cointegrating 

vector when all variables are held constant. However, the coefficients for the real output are far 

from satisfying unitary income elasticity. 
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Table 5 performs the LR test of unitary income elasticity and strongly rejects it for all 

countries. 

4. Identifying Structural Shocks from Impulse Responses 

4.1 Point Estimates of Impulse Responses 

Figures la, lb, and lc. illustrate the estimated impulse responses along with 90% confidence 

bands.12 The lag lengths are the same as those used for the cointegration tests reported in Table 2. 

Kilian (1998) shows that constructing confidence bands for impulse responses in VARs using the 

asymptotically-correct normal approximation can be misleading in small samples. 11 Small 

sample bootstrap distributions are usually skewed (see Chapter ID Therefore I use the second-

best Monte-Carlo integration approach to construct confidence bands around the impulse 

responses. Table 9 shows the results from applying Kolmogorov-Smirnov tests for normality 

based upon Monte-Carlo integration samples of a set of impulse responses for the U.S. - Japan 

real exchange rate. The bootstrap distribution of the impulse responses is skewed and normality is 

rejected. The histogram for the impulse response of real exchange rate for various shocks 

provides another visual test to judge for symmetry of the distribution. 

1 have put three restrictions on the stochastic trends for exact identification in the common 

trends model. I still need to compare the point estimates of the impulse responses with the 

qualitative expectations from common economic models in order to feel comfortable in naming 

them as permanent supply, demand, and nominal shocks. The standard exchange rate model 

(Dombusch, 1976) predicts that an expansionary shock to U.S. monetary policy leads to 

depreciation in U.S. nominal and real exchange rates. Using a level VAR with short-run 

restrictions, Eichenbaum and Evans (1995) find evidence in favor of the prediction. Jang and 

Ogaki (2000) use a SVEC model of dollar / yen real exchange rate with long run restrictions and 

conclude that contractionary monetary shocks either using federal funds rates or nonborrowed 

reserve ratio lead to appreciation in the real exchange rate. CG (1995) use a trivariate VAR in 

differences and find that money supply shocks depreciate the real exchange rate. Rogers (1999) 

find that both the money multiplier and the monetary base shock cause real exchange rate 

depreciation in the short-run. I would also expect that a permanent positive nominal shock would 

permanently increase the nominal interest rate. The effect of a nominal shock on real output has 

been found significant, but temporary in models with slowly clearing market prices (CG, 1995). 
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In a similar four-variable VEC model with real output, nominal interest rates, real money 

balances and inflation with money demand as the cointegrating vector, Crowder, Hoffman and 

Rasche (1999, CHR for short) identify the permanent nominal shock as an inflation expectations 

shock. CHR provide external evidence that it tracks quite closely the Michigan inflation 

expectations survey. Their inflation expectations shock causes a temporary increase in real output 

due to a possible lag in interest rate increases leading to a lower real interest rate in the short-run 

and hence increasing output. Reduction of real balances prevails in both the short and the long 

run in response to an increase in the cost of maintaining money balances. A priori, I expect that 

my VEC model also lead to the same responses in the chosen variables. The permanent shock to 

inflation expectations can be precipitated by events that lead to upward revisions in inflationary 

expectations. I expect that that would lead to an increase in nominal interest rate and also a 

depreciation in the short-run to the real exchange rate. 

Demand shocks, be it in the form of a change in government expenditures or a preference 

towards traded goods appreciate the real exchange rate (Rogers, 1999: CG. 1995). Such demand 

shocks can also cause a temporary increase in real output. So long as they lead to a change in the 

interest rates, I would expect a reduction in real balances both in the short and in the long run in 

line with money demand equation. 

Productivity shocks are expected to increase real output as they change the capacity of the 

economy. As the marginal cost of capital is reduced, real money balances is expected to increase 

both through reduced interest rates and an increasing money supply from the monetary authority. 

The effect of productivity shocks on real exchange rates has often been a contentious issue for 

economists. CG model posits depreciation in the real exchange rate due to a supply shock. Their 

findings do not fully confirm their expectation and they note wrongly signed responses for part of 

their sample. MacDonald and Swagel (1998) also confirm the perverse sign of a supply shock on 

the real exchange rate. Chadha and Prasad (1997) find depreciation in the real exchange rates 

using real effective exchange rates and a larger sample than CG. Therefore, although there exists 

mixed empirical evidence for supply shock effects, my a priori expectation is that real exchange 

rate depreciates both in the short and in the long run. 

Using common features of existing models in the literature my short-run and long run 

predictions of the directional effects of the permanent shocks on the variables in the VEC model 

would be: 13 
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i) Short Run 

Real GDP 

Real Exchange 

Real Money Balances 

Nominal Interest Rate 

Supply Demand Nominal 

>0 >0 >0 

>0 <0 >0 

>0 <0 <0 

<0 >0 >0 

ii) Long Run 

Supply Demand Nominal 

Real GDP >0 0 0 

Real Exchange >0 <0 0 

Real Money Balances >0 <0 <0 

Nominal Interest Rate <0 >0 >0 

Consider first the point estimates of the impulse responses. I want to examine whether the 

signs of the short and long run responses of U.S. real output, the U.S. real exchange rate, U.S. real 

Ml money balances, and the U.S. treasury-bill interest rate to positive one standard deviation 

supply, demand, and nominal shocks are consistent with my expectations. 

The impulse responses for Germany, France, Japan and Italy meet all my expectations.14 

However, there are discrepancies between the estimated responses and my predictions. Real 

exchange rate appreciates for United Kingdom as in CG. All other responses have correct signs 

for United Kingdom. The common trend decomposition does not fare well with Canada: Supply 

shock appreciates the real exchange rate in the long run; demand shock reduces output, 

appreciates the real exchange rate and reduces the nominal interest rate in the short-run; the 

nominal shock appreciates the real exchange rate in the short-run. Those responses do not provide 

a proper shock identification for Canada. Overall, I have quite satisfactory performance from the 

impulse responses and I am justified in interpreting the shocks as supply, demand, and inflation 

expectations shocks. I do not try to identify the transitory shock as there is only one and it is hard 

to attach an economic meaning for it is a composite of all types of transitory shocks. 
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4.2. Confidence Intervals 

Point estimates only tell part of the story and sampling error should be taken into account 

through the construction of confidence intervals. The inflation expectations shock significantly 

increases real output in the short-run. decreases real balances and increases nominal interest rates 

both in the short and in the long run for all countries. Real exchange rates do not have significant 

responses to nominal shocks except for Japan in the short-run. Demand shock responses are 

significant for real output for all G-7 members, with Canada having the opposite sign. Real 

exchange rate also significantly appreciates. Only for United Kingdom do the nominal interest 

rate and real balances not have significant responses. The productivity shock significantly 

increases real output after the first two quarters. Real money balances exhibit a significant 

increase and the nominal interest rate a significant decrease for all G-7 countries. As I had 

expected I have a slightly mixed response from real exchange rates to supply shocks. Only for 

Japan do I have significant responses, whereas the other countries show insignificance of point 

estimates at all horizons. 

4.3. Robustness: estimating with different lag lengths 

There are different ways one can handle the choice of lag lengths in a VAR framework. 

Among the alternative procedures commonly used are Schwartz Bayesian Criteria (SBC), the 

Akaike Information Criteria (AIC), Hannan-Quinn Criteria (HQ), and the Likelihood Ratio Test 

(LR). In this section. I consider how robust the structural VEC model results are to different lag 

lengths. 

The results presented above were based on HQ criteria. In five cases HQ selected lag length 

one and only for Canada it selected lag length two (Table 3). AIC and LR picked the same but 

higher lag lengths than HQ for all countries. Figure 2 illustrates how the results for Germany, 

Japan and France differ according to whether the lag lengths are chosen via HQ or LR, and 

AIC.15 I observed that the response of real exchange rate to a supply shock was the most 

sensitive impulse response. French and Japanese real exchange rate appreciates about five 

quarters after the supply shock and then depreciates with a lag length of two, while the impulse 

response for lag length one quickly depreciates after the shock. France and Japan have perverse 

signs for the supply shock only in the short-run. However, the responses from Germany are quite 

different. It displays the perverse sign effect both in the short and in the long run. Real exchange 

rate experiences a permanent depreciation for a lag choice of three, while with HQ criterion and a 
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lag equal to one, it depreciates. One possible explanation might be that unaccounted cointegration 

effects might be what is behind the changing sign of the responses. From Table 2, I see that only 

for Germany do I have evidence that there exists more than two cointegrating vectors. As for 

Japan and France the evidence is that there may exist two cointegrating vectors at the most. Based 

on cointegration tests, Germany seems to be the only country where I may have a serious 

misspecification problem for the common trends decomposition with one cointegrating vector.16 

4.4. Variance Decompositions 

Table 6.a provides decompositions of the k-step ahead forecast error variance in the 

forecasting the logged level of the real exchange into the proportion attributable to each other 

structural innovations. Under the assumption that the real exchange rate is a unit root process, the 

unconditional variance of the real exchange rate, which is the limit of the k-step forecast error 

variance as k goes to infinity, is not finite. However, the unconditional variance of the stationary 

first-differenced exchange rate is finite. Its decomposition can be inferred from Table 6.b, which 

provides decompositions of the conditional variance of the differenced log of the real exchange 

rate into the proportion attributable to each of the structural innovations. Table 6 also includes the 

90-percent confidence intervals for each estimated proportion. Warne (1993) shows that they are 

normally distributed. However, in small samples the distribution is fairly skewed. Figure 4 

illustrates for the Japanese case, that the bootstrap distributions of the variance decompositions. 

The distributions for the supply, nominal and the temporary shock are skewed to the left. Similar 

skewness was observed for most variance decompositions. As a result, I chose to report 90-

percent confidence intervals derived from the empirical bootstrap using Monte-Carlo integration. 

First, consider the conditional variances of (logged level of the) real exchange rate reported in 

Table 6.a. For all six countries, demand shocks dominate in the short-run and in the long run. For 

Germany, France and Italy demand shocks account for over 90% of the forecast error variance for 

all horizons. Japan, Canada, and UK accounts for at least close to 80% until 12 quarters. Demand 

shocks explain more than 90% at horizon 24 for Canada and UK, but only 78% for Japan. Supply 

shocks dominate over nominal shocks after 4 quarters. In Japan supply shocks account for 20% of 

the forecast error variance after 24 quarters. Nominal shocks exert their biggest influence in the 

first quarter and quickly lose their effect in variance decompositions. A similar pattern is 

observed for the temporary shocks. After 24 quarters demand shocks dominate, followed by 

supply and nominal shocks. 
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Next consider Table 6b., which presents the forecast-error variance decompositions for the 

differenced logs of the real exchange rate. The proportion of the k-step forecast-error variance in 

the differenced real exchange rate attributable to a particular type of shock will converge as k 

increases to the proportion of the unconditional variance attributable to that shock. In Table 6b I 

observe that convergence occurs within the first 12 quarters. I also observe that demand shocks 

account for more than 70% at all horizons. After conversion occurs, they account from 74% to 

93% of the forecast error variance. Supply shocks seem to be the second dominant influence on 

real exchange rate changes. Supply shocks dominate nominal shocks after 4 quarters and at 24 

quarter horizon their effect ranges from 3% to 11%. Nominal shocks tend to explain similar 

amounts at all horizons. Temporary shocks exhibit significant effect on forecast error variances. 

For Japan they explain 10%, for Canada 16% and for UK 5% after 24 quarters. 

I also compare my variance decompositions with findings from Chapter two in Table 7. 

Chapter two follows CG approach with three variables, real output, real exchange rate and price 

level differences and carry out a structural VAR approach in differences. Their decomposition has 

the same identification constraints on the effects of shocks. Their variance decomposition has the 

same supply, demand and nominal shocks, shocks having no permanent effect on the output and 

real exchange rate. A similar decomposition can be shown for my model after I aggregate 

permanent nominal and temporary shocks as neither of them have any permanent effect on real 

exchange rate and real output. Demand and supply shocks are also aggregated as a different 

column as permanent shocks. UK, Germany, France and Italy have surprisingly close values for 

the forecast error variance decompositions of differenced real exchange rates when it comes to 

identifying the forecast error variance explained by real and transitory shocks after 24 quarters. 

For example, permanent shocks explain about 96.8 % in my model whereas CG model in Chapter 

two explains % 96.9. The relative effects are different for Canada and Japan. 

4.5. An Examination of the Innovations that Compose the Permanent Trend 

1 can investigate whether the common trends identified by my decomposition may be 

ascribed to trends in government expenditures and inflation expectations for the case of France. 

The trend for the demand component is the accumulated demand shocks identified in the VEC 

model and similar shocks are expected to affect the ratio of federal expenditures to output. I 

called my identified nominal shocks as the inflation expectations shock and I may compare the 

nominal trend with Michigan Survey Data. Inflationary expectations are compiled by the Survey 
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Research Center at the University of Michigan. Participants are polled for their estimates of the 

future course of inflation over the subsequent twelve-month period A comparison of the ratio of 

federal expenditures in U.S. to identified trend for the demand component appears in Figure 3. 

along with the comparison of Michigan Survey and the identified nominal trend.17 The first 

figure reveals that the trend rate of growth in inflation expectations is clearly mimicked by the 

nominal trend. The decreasing trend is evident after the New Operating Procedures of the FED in 

1979 and after the resumption of interest rate targeting after 1981. The correlation coefficient is 

0.66. The second figure about the trend for the demand component shows similar trend growth in 

the early Reagan in years (1980-1984) when federal expenditures were on the rise, and then a 

decline toward the end of Reagan's second term in office. The demand component continues its 

declining trend while the ratio of federal expenditures to output is stabilized after 1988. The 

correlation coefficient between the two series is 0.51. the remaining correlation coefficients for 

Canada, Japan, UK, Italy and Germany are in Table 8. The correlation coefficients for the 

permanent demand component ranges from 0.35 to 0.52. The correlation coefficients for the 

nominal trend range from 0.07 to 0.66. Canada shows the lowest amount correlation. This is not 

surprising since I was not able to correctly identify the shocks in the Canadian case. 

5. Conclusion 

The fundamental innovations I identified in my simple cointegrated system leave imprints 

that coincide with predictions of most contemporary macroeconomic and international finance 

theories about real exchange rates. Rather than just asserting long run restrictions on the effects of 

shocks for the chosen VAR variables, I first establish cointegration rank, and thereby enumerate 

distinct, independent, permanent innovations that underlie the system. Identification is guided by 

knowledge of the long run money demand relationship that ties the variables in the system 

together. Two of the permanent shocks have the characteristics of a supply, and an aggregate 

demand innovation, whereas the permanent nominal shock bears features of a shock to inflation 

expectations. 

Shock identification for real exchange rates in a structural VAR model has generally been 

carried out using differenced variables with long run restrictions. Such approaches are incomplete 

for there exists evidence of cointegrating relationships between the macroeconomic variables 

used in the VAR estimations. Even stylized paper by CG (1995) is burdened with cointegrating 

relationships for half of their sample. Chapter two also pointed to possible misspecifications in 
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structural VAR systems where cointegration effects are ignored. The point estimates of impulse 

responses may even change signs leading to serious difficulties in identification. For a more 

general approach Alexius (2000), Karstensen and Hansen (1997), and Ogaki (2001) attempt at 

structural shock identification using common trends approach for real exchange rates. My study 

differs from them by (i) incorporating all G-7 countries in the estimations, (ii) using an economic 

behavioral relationship, money demand function as the cointegrating vector, (iii) using only the 

floating exchange rate period for comparison with other structural VAR studies, (iv) illustrating 

the adverse effects of unaccounted cointegration relationships on impulse responses. 

Common trends approach for the structural decomposition of real exchange rates corrects for 

the wrong sign of impulse responses in the presence of cointegration (Chapter two). For most of 

the countries in the sample, the perverse sign effect of the supply shock is eliminated. Real 

exchange rate appreciates only for UK in response to a supply shock, which is also confirmed by 

other studies (CG, 1995; MacDonald and Swagel, 1998). I observe more significant effects of 

structural shocks on the variables in the common trends approach. That further illustrates the 

benefits of common trends decompositions. Nominal and supply shocks turned out to be 

insignificant for real exchange rates for most countries and significance of shocks on real 

exchange rates still remains a problem. One of the most serious effects of cointegration in the 

structural decompositions was examined on real exchange rate responses to supply shocks. Model 

mispecifications can result in diametrically opposite conclusions as impulse responses change 

sign with different lag lengths that bring along additional co-movement (cointegration) of the 

variables. 

The variance decompositions confirm the previous results in the literature, demand shocks 

being the dominant factor in real exchange rate fluctuations. One other important feature of 

structural decompositions I identify is that it is the type of long run restrictions rather than the 

variables used that change the relative importance of permanent versus nominal shocks on the 

real exchange rates. Although my common trends decomposition uses different variables, the 

forecast error variance that can be explained by permanent innovations for real exchange rate 

differences are very similar for most of my sample which is the same for Chapter two even 

differing only by 0.1% points. Sarte and Daniel (1997) point out that identification in structural 

VARs can be very sensitive to identifying restrictions. My restrictions are the same with Chapter 

two, which is why I have similar results in variance decompositions. 
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The structural VEC model of real exchange rates in the floating exchange rate period pursued 

in this paper provides a more general estimation approach and can be regarded as an 

improvement on the existing structural decomposition techniques. 
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Notes 

1. Actually, Clarida and Gali (1995) find cointegration for two of the four countries at 10% 

significance level, but they ignore this in the subsequent empirical analysis. In Rogers 

(1999), the null hypothesis of cointegration would not be rejected if the 90% critical 

values of the Johansen (1988) tests were used instead of 95% critical values. 

2. Unitary income elasticity is a testable proposition that I examine in my empirical 

analysis. Evidence of cointegration among these variables have been examined in various 

papers. Hoffman and Rasche (1991b), Hoffman et al. (1995), and Stock and Watson 

(1993) present evidence on the stationarity of money demand. 

3. The break at 79:4 capture shifts in the deterministic drift of the variables triggered by the 

New Operating Procedures experiment that began in October 1979. Crowder, Hoffman 

and Rasche (1999) pursue a similar approach. I do not include the break for the 

resumption of interest rate targeting, as it does not significantly alter the implications of 

common trends approach, but yet reduce the performance of the decomposition mainly in 

the short-run. The break variable is 0 prior and 1.0 as of 1979:4. 1 found the break 

dummies to be significant for real money balances for all cases. 

4. Using the notation of sections 2.1 through 2.3. n = 4 , k = 3 .  r  = 1 and 

P T  =[ -E X  o  i  E Z ) .  

5. Clarida and Gali (1995) use quarterly data 1976:3 - 1992:4 for Japan, 1974:3 - 1992:4 

for Canada, Britain and Germany. Their data sources are as follows: CP1 data are from 

International Financial Statistics (IFS) data tapes, real GDP data are from OECD Main 

Economic Indicators and exchange rate data are from Federal Reserve Bank of New 

York. My data for all G-7 countries are from IFS December 1993. I did not extend the 

data at this point to current observations as the objective of this paper is to see if error 

correction can rectify the identification and lag selection problems exposed in Chapter 

two. 
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6. I do not report the usual test statistics as their distribution in the presence of breaks 

has not yet been determined. 

7. The analysis for unit root and cointegration has been done using RATS and also 

MALCOLM 2.4 (Mosconi, 1998) which is also a menu-driven RATS package 

implemented in a user-friendly environment. 

8. Using the notation of sections 2.1 through 2.3, p = 2, for Canada, and p = 1 for all the 

remaining countries. For the maximum lag selection, 1 checked the residuals in the VAR 

estimation in levels and increased lag length until I was satisfied that the residual 

behaviour was consistent with white noise errors. 

9. Using different lag lengths do not cause significant changes in the common trends 

decomposition. Higher lag lengths lower the performance of the decomposition for the 

short-run, with the exception of Germany that results in a sign change in the impulse 

responses with a lag length of three both in the short-run and the long run. Those issues 

will be re-examined in the section about the robustness of the impulse responses to lag 

selection in the common trends model. 

10. Including real exchange rate alters the impulse responses slightly only in the short-run, 

and do not affect the main conclusions of the paper. 

11. Kitian recommends a bootstrap-after-bootstrap method to get more reliable confidence 

bands for impulse responses. The second-best approach in Kilian (1998) is Monte-Carlo 

integration and that is what I pursue in this paper. 

12. The common trend decomposition was carried out using part of the procedures in RATS 

written by Anders Warne. The procedures are available in the owner's website. In the 

impulse responses, rgdp is real GDP, rexch is the real exchange rate, rmb is the real 

money balances, and int is the nominal interest rate. 
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13. The loading matrix Y is determined up to a sign of its coefficients after proper choice of 

4*0 due to the Cholesky decomposition to find n. I resolve these ambiguities by trying 

to match the predictions for certain long run effects of the structural shocks with the 

estimated long run responses. These long run selection criteria are: supply shocks have a 

positive effect on real GDP, demand shocks appreciate the real exchange rate, and 

nominal shocks increase the nominal interest rate. 

14. It is not very clear what economists exactly mean by short-run. If short-run is defined as 

the total effect in the first four quarters after the shock, then I have the correct signs for 

the short-run. The real exchange rate for Germany and Japan depreciates the first quarter 

after the shock and then depreciates quickly as expected. The real output for Japan also 

dips in the first quarter and then takes off. 

15. We do not present figures for Canada, and UK as the responses displayed very minor 

changes with different lag lengths. I believe the non-robustness of impulse responses are 

closely related to cointegration effects and therefore chose only Germany, Japan and 

France where Table 2 hints at more than one cointegration vectors when significance 

level is set at 10%. 

16. Using lag length three, the impulse responses of the other variables due to a supply shock 

for Germany also has perverse signs in the VEC model. Real balances decrease 

permanently after a supply shock, and nominal interest rates are reduced in the short-run 

for three-quarters after the shock. 

17. The graphs have two separate scales. The scale on the left is for the identified trend 

components, and the scale on the right is for ratio of federal expenditures to output and 

for the Michigan Survey. The reason I have two scales is that I do not have the variables 

inflation and federal expenditures to GDP ratio in my structural VEC model. The 

identified trends need to satisfy some simple accounting being that their sum equal to the 

permanent components of the variables in the system. Should I have inflation and federal 

expenditure ratio, then the identified trend components would be anchored better to the 
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scales of the variables to which are they are most related. I am mainly interested in the 

trend growth and hence the different scales are not my main concern. 
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TABLE 1 

UNIT ROOT TEST RESULTS 

Variable Country 
Canada Japan U.K. Germany France Italy 

ADF Tests: 

q Tm -2.051 -1.549 -2.874" -1.793 -2.116 -1.828 

United States 

y r. -2.433 

Tm -0.659 

mp r_ -1.953 

Tu 0.015 

i rA -2.190 

PP Tests: 

q 7^ -1.62 -1.44 -1.52 -1.58 -1.69 -1.35 

United States 

v r -2.32 
r 

-0.36 

mp rf -1.80 

0.57 

-1.56 

Notes: y is logged real GDP. q is logged real exchange rate, mp is logged real money balances, 
and i is the Treasury bill rate on an annual basis. ADF is the Augmented Dickey-Fuller test statistics. The 
number of lags included in the ADF regressions were selected by the AIC. PP is the Phillips-Perron test 
statistics, constructed using the first four autocovariances. Critical values from the Dickey-Fuller 
distributions with sample size 100 were used for all countries. 

* denotes significant at the 10% level and ** denotes significant at the 5% level. 
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TABLE 2 

Tests for Cointegration and Identifying the Cointegration Space in the VAR System 

x, = [ y, Q, mp, i, ] 

Countries Lag Criteria M o
 

r < 1 r< 2 r < 3 

CANADA HQ (2) 56.69 " 19.04 5.96 0.01 
AIC (3) 41.44 17.18 6.16 0.01 
LR (3) 41.44 17.18 6.16 0.01 

JAPAN HQ (1) 83.30 19.36 3.87 2.77 
AIC (2) 57.24 25.85' 7.72 0.32 
LR (2) 57.24 25.85 ' 7.72 0.32 

UNITED KINGDOM HQ (1) 71.71 14.37 5.39 0.67 
AIC (2) 54.73 19.69 6.81 0.95 
LR (2) 54.73 19.69 6.81 0.95 

GERMANY HQ (1) 81.07 17.89 6.09 1.09 
AIC (3) 57.30 25.47 ' 13.06" 4.86' 
LR (3) 57.30 25.47 ' 13.06" 4.86' 

FRANCE HQ (1) 77.79 17.10 5.49 0.81 
AIC (2) 57.48 23.82' 9.29' 1.77 
LR (2) 57.48 23.82* 9.29' 1.77 

ITALY HQ (1) 77.62 15.66 2.94 0.73 
AIC (2) 56.04 22.94 7.33 0.53 
LR (2) 56.04 22.94 7.33 0.53 

"Break" Trace Critical Values 
Test r = 0 r < 1 r< 2 r < 3 

95% 45.84 26.23 9.51 3.84 
90% 42.53 23.75 7.77 2.71 
Conventional Trace Critical Values 
95% 47.20 29.70 15.40 3.80 
90% 44.00 26.80 13.30 2.70 

Notes: Trace critical values are based on results of simulations designed to account for the 
possibility of breaks *n the deterministic drifts of the data corresponding to the intervention dummy at 79:4. 
The simulations were performed on DisCo and the experiments were designed as prescribed by Johansen 
and Nielsen (1993). Conventional critical values are taken from Osterweld-Lenum (1992). 

HQ is the Hannan-Quinn criterion, AIC is the Akaike Information Criterion, and LR is the 
Likelihood Ratio Test. Lag is the lag length in VAR with levels series. Due to the quarterly nature of the 
data, the model was pared down starting from a maximum lag length of five. The values in parentheses are 
the chosen lag lengths. Significance of coefficients are determined using "Break" Trace critical values. 
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TABLE 3 

Tests of Stationarity and Exclusion p-values of Tests against indicated null 

>'r <7, mPt 

Countries 

CANADA 

JAPAN 

UNITED KINGDOM 

GERMANY 

FRANCE 

ITALY 

H S  

H E  

H S  

»E 

Hs 

HE 

Hs 
H E  

Hs 

Hs 
HE 

0.000 

0.040 

0.000 

0.112 

0.000 
0.013 

0.000 
0.023 

0.000 

0.012 

0.000 
0.009 

0.000 

0.035 

0.000 
0.741 

0.000 
0.186 

0.000 
0.026 

0.000 

0.075 

0.000 
0.050 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 

0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 

0.000 

0.000 
0.000 

Notes: The hypothesis Hs refers to the null that the variable is integrated of order zero. 
H E refers to the null that the cointegration space has zero coefficients for the variable (i.e. it is 

excluded from the cointegration space). Hs is distributed as x~ with three degrees of freedom, 

and H E as x~ with one degree of freedom. 
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TABLE 4 
Cointegrating vector Coefficients 

>'r 1, mPt >t 

Countries 

CANADA -0.401 0.417 1 0.050 
-0.352 0.000 1 0.044 

JAPAN -0.368 0.032 1 0.051 
-0.317 0.000 1 0.051 

UNITED KINGDOM -0.474 0.096 1 0.045 
-0.414 0.000 1 0.046 

GERMANY -0.485 0.183 1 0.053 
-0.402 0.000 1 0.049 

FRANCE -0.497 0.129 1 0.048 
-0.426 0.000 1 0.047 

ITALY -0.576 0.198 1 0.054 
-0.423 0.000 1 0.046 

TABLE 5 
Likelihood Ratio Test of Unitary Income Elasticity 

X" (df = 2) p-value 

Countries 

CANADA 21.179 0.000 

JAPAN 24.146 0.000 

UNITED KINDOM 17.763 0.000 

GERMANY 21.323 0.000 

FRANCE 19.102 0.000 

ITALY 21.482 0.000 

Notes: The cointegrating vector coefficients table includes coefficients for the case where all variables 
are included in the cointegration space and also for the case when only money demand equation is assumed 
to define the comovements of the variables. The Likelihood Ratio tests exclude real exchange rate from the 
cointegration space and assumes unit income elasticity for the semi-log money demand equation. 

The cointegrating coefficients are normalized on real money balances. 
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TABLE 6 

DECOMPOSITIONS OF K STEP AHEAD FORECAST ERROR VARIANCE 
IN REAL EXCHANGE RATES ATTRIBUTABLE TO EACH TYPE OF SHOCK 

WITH 90-PERCENT MONTE CARLO CONFIDENCE INTERVALS 

Part a; Real Exchange Rate Levels 

U.S. - Japan U.S. - Germany 
Forecast Supply Demand Nominal Temporary Forecast Supply Demand Nominal Temporary 
Horizon: Shock Shock Shock shock Horizon: Shock Shock shock Shock 
1 0.014 0829 0054 0.102 1 0.003 0.907 0.024 0.065 

(0000,0.1)8) (0577.0.955) (0.005,0 147) (0.003,0281) (0000,0.154) (0.702,0.981) (0.000,0.072) (0.000,0.182) 
4 0.056 0.879 0027 0.060 4 0.031 0.936 0.008 0.025 

(0011,0 271) (0.636,0.969) (0.003,0.081) (0007,0 148) (0 004,0.175) (0.759,0.988) (0.000,0.034) (0.001,0.080) 
12 0.162 0.814 0.007 0.016 12 0.090 0.900 0.002 0.007 

(0.013,0.544) (0.422,0.976) (0.001,0020) (0.002,0034) (0.004.0.396) (0.577,0.992) (0.000,0009) (0.000,0.021) 
24 0.206 0.784 0.003 0.007 24 0.1 II 0.884 0.001 0.003 

(0.011,0.648) (0.337,0 984) (0.000,0.008) (0.001,0.13) (0.003.0.527) (0.466,0.995) (0.000,0.003) (0.000,0.008) 

U.S. - Canada U.S. - France 
Forecast Supply Demand Nominal Temporary l;orecasl Supply Demand Nominal Temporary 
Horizon: Shock Shock Shock shock Horizon: Shock Shock shock Shock 
1 0.042 0.793 0020 0.144 1 0.001 0.974 0.021 0.004 

(0.001,0.162) (0.554,0.955) (0.000,0.087) (0.012,0.313) (0.000,0.085) (0.798,0.990) (0.000,0.074) (0.000,0.113) 
4 0017 0.928 0013 0041 4 0043 0.947 0.005 0.004 

(0.004,0.146) (0.757,0.978) (0.000,0060) (0004,0.l0(i) (0.002,0.212) (0.730,0.991) (0.000,0.032) (0.000,0.055) 
12 0012 0 971 0004 0012 12 0 076 0.920 0.002 0.001 

(0004.0.253) (0.706,0.988) (0.000,0018) (0.0P2.003I) (0.003,0.386) (0.598.0.993) (0.000,0.009) (0.000,0.018) 
24 0.014 0.977 0002 0006 24 0088 0.910 0.001 0.001 

(0.003,0.346) (0 636,0992) (0000,0007) (0 000,0 013) (0.003,0 490) (0497,0.995) (0.000,0 004) (0.000,0.007) 

U.S. - UK U.S. - Italy 
Forecast Supply Denund Nominal Temporary Forecast Supply Demand Nominal Temporary 
Horizon: Shock Shock Shock shock Horizon: Shock Shock shock Shock 
I 0.102 0857 0.004 0.037 1 0000 0 981 0.019 0.000 

(0.008,0.263) (0624,0.961) (0000,0045) (0.000.0.171) (0.000.0 070) (0 820,0.988 (0.000,0.074) (0000,0.101) 
4 0076 0910 0.003 0.011 4 0.032 0.959 0.005 0.003 

(0.008,0.283) (0.678,0.977) (0.000,0032) (0 001,0.060) (0.002,0.189) (0.769,0.990) (0.000,0.034) (0.001,0.049) 
12 0042 0.953 0.001 0.003 12 0061 0.936 0.002 0.001 

(0008,0.350) (0645,0.986) (0.000,0012) (0.000.0020) (0.003,0.355) (0.625,0.994) (0.000,0.010) (0.000,0.016) 
24 0031 0.966 0.000 0.002 24 0.071 0.928 0.001 0000 

(0.006,0.427) (0.569.0.991) (0000,0.005) (0.000,0.009) (0003,0.436) (0554,0.995) (0 000,0.004) (0.000,0.007) 
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Table 6, Part b; Real Exchange Hate Differences 

U.S. - Ja aan U.S. - Germany 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

Temporary 
shock 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
shock 

Temporary 
Shock 

1 0014 
(0.000,0.138) 

0.829 
(0.577,0.955) 

0.054 
(0.055,0.147) 

0 102 
(0 003.0.281) 

1 0.003 
(0.000,0.154) 

0.907 
(0.702,0.981) 

0.024 
(0.000,0.072) 

0.065 
(O.OOI.O.I82) 

4 0.085 
(0.033,0.22'» 

0.769 
(0.519,0.914) 

0 049 
(0.007,0.122) 

d096 
(0.016,0.235) 

4 0051 
(0.014,0.188) 

0.859 
(0.654,0.964) 

0.024 
(0.001,0065) 

0.064 
(0.005.0.166) 

12 0.1 II 
(0.044,0.342) 

0.738 
(0.447,0.899) 

0.050 
(0007,0 116) 

0.099 
(0 017,0.226) 

12 0057 
(0016,0237) 

0852 
(0.605,0.961) 

0.024 
(0.001,0.063) 

0.066 
(0.005.0.165) 

24 0.1 II 
(0.044,0.349) 

0.738 
(0.437,0.899) 

0050 
(0007.0 116) 

0.099 
(0 017,0.226) 

24 0.057 
(0.016,0.237) 

0.852 
(0.605.0.961) 

0024 
(0.001,0.063) 

0.066 
(0.005,0.165) 

U.S. - Canada U.S. - France 
Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

Nominal 
Shock 

Temporary 
shock 

Forecast 
Horizon: 

Supply 
Shock 

Demand 
Shock 

f fominal 
lock 

Temporary 
Shock 

1 0.042 
(0.001,0.162) 

0.793 
(0.554,0.955) 

0020 
(0.000,0087) 

0.144 
(0012,0.313) 

I 0001 
(0.000,0085) 

0.974 
(0.797,0.990) 

\f 0.021 
(0.000,0.074) 

0.004 
(0.000.0.113) 

4 0054 
(0.012,0.175) 

0.754 
(0.523,0.922) 

0022 
(0.001,0087) 

0.169 
(0.022,0.337) 

4 0.036 
(0.008,0.158) 

0.931 
(0.712,0.976) 

0025 
(0.001,0.078) 

0.008 
(0.002.0.123) 

12 0.058 
(0.015,0.195) 

0.749 
(0.511,0.917) 

0.022 
(0.002,0.085) 

0.169 
(0.023.0.331) 

12 0.037 
(OOIO.O.I83) 

0 930 
(0.683,0.974) 

0.025 
(0.001,0.076) 

0.008 
(0.003,0.119) 

24 0058 
(0.015,0.201) 

0 749 
(0.511,0.917) 

0022 
(0.002,0.085) 

0 169 
(0023,0 331) 

24 0.037 
(0010,0 188) 

0.930 
(0.680.0.974) 

0 025 
(0.001,0.076) 

0.008 
(0.003,0.119) 

U.S.-UK U.S. - Italy 
Forecast Supply Demand Nominal Temporary Forecast Supply Demand Nominal Temporary 
Horizon: Shock Shock Shock shock Horizon: Shock Shock shock Shock 
1 0.102 0.857 0.003 0.037 1 0 000 0.981 0019 0.000 

(0.008,0263) (0 624,0.961) (0.000,0.045) (0.000,0.171) (0 000,0.071) (0.820,0.988) (0.000,0.074) (0.000,0.095) 
4 0101 0850 0004 0044 4 0030 0.938 0.025 0.006 

(0.021,0.277) (0.606,0.939) (0.001,0.049) (0 003,0.194) (0.007,0.141) (0.735,0.972) (0002,0.080) (0.003,0.121) 
12 0.102 0 848 0.005 0.045 12 0.031 0.937 0.025 0.007 

(0.025,0.282) (0.597,0.935) (0000.0051) (0.003,0.191) (0.009,0.162) (0.699.0 969) (0002,0.80) (0.004,0.122) 
24 0.102 0.848 0005 0.045 24 0.031 0.937 0.025 0.007 

(0.026,0283) (0.597,0.935) (0000,0051) (0 003,0 191) (0.009,0.162 (0693,0.969) (0.002,0.80) (0.004,0.122) 
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TABLE 7 

Comparison of Forecast Error Variance Decompositions after 24 quarters 

Permanent Permanent 
demand + supply nominal + temporary 

Countries Model 

CANADA CG 0.916 0.084 
CT 0.807 0.193 

JAPAN CG 0.957 0.043 
CT 0.849 0.151 

UNITED KINDOM CG 0.948 0.052 
CT 0.950 0.050 

GERMANY CG 0.913 0.087 
CT 0.909 0.091 

FRANCE CG 0.970 0.030 
CT 0.967 0.033 

ITALY CG 0.969 0.031 
CT 0.968 0.032 

Notes: The values in the table are the forecast error variance of changes in real exchange 
rates that can be explained by the relevant shocks using CG (Clarida and Gali) model, and CT 
(Common Trends) model after 24 quarters. CG model values are from page 54 in Chapter II. CG 
has 3 variables: relative real GDP, real exchange rate, and relative price levels. CT model has 4 
variables: real GDP for US, real exchange rate, real Ml for US, and US Treasury bill rate. 
Permanent supply and demand shocks are identified by using the same restrictions in both 
models. CG does not have permanent nominal component. All shocks other than demand and 
supply are temporary shocks in CG model. 
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TABLES 

Examination of the Innovations in the Common Trend Model 

Correlation coefficients 

Permanent Permanent 
demand nominal 

Countries 

CANADA 0.51 0.07 

JAPAN 0.38 0.48 

UNITED KINGDOM 0.35 0.13 

GERMANY 0.35 0.13 

FRANCE 0.52 0.66 

ITALY 0.52 0.44 

Notes: The correlation coefficient in the first column is the correlation between the ratio federal 
expenditures and the permanent demand component. The second column values are correlation coefficients 
between the permanent nominal trend and the Michigan Survey Data for inflation expectations. Survey data 
starts at 78:1. and the correlation coefficient is valid for 79:1 - 92:4. 

TABLE 9 

Kolmogorov-Smirnov Tests for Normality of U S - Japanese Real Exchange Rate Responses 

Shock Horizon P-Value 

Supply 4 8.01x10-3 
12 8.79x10"-
24 2.32x10-" 

Demand 4 1.78xl0"15 

12 2.38xl0-19 

24 2.35x10"" 

Nominal 4 4.75x10"— 
12 1.28xl0"17 

24 0.00 
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Figure l.a. 

Accumulated Impulse Responses k-Quarters After Shock with 90% Confidence Intervals 
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Figure l.b. 

Accumulated Impulse Responses k-Quarters After Shock with 90% Confidence Intervals 
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Figure l.c. 
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FIGURE 2 

Robustness of Impulse Responses to VAR lag Specification 

Cumulative Responses of Real Exchange Rate to Supply Shocks 
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FIGURE 3 

Permanent Nominal Component and Inflation Expectations from the Michigan Survey Data 
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Notes: The perm_inf series is the permanent nominal component after Common Trends 
decomposition. The inf_exp series is inflation expectations for the next year obtained quarterly 
from Michigan Survey Data. The perm_dem series is the permanent demand component obtained 
using Common Trends approach. The fed_exp_ratio series is the ratio of federal government 
expenditures to output. Michigan Survey Data and data for federal expenditures are taken from 
FRED at the St. Louis FED Web site. Michigan Survey data starts at 78:1. The plots are on two-
scale due to absence of inflation and federal expenditures as variables in the VEC model. 
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FIGURE 4 

Histograms of Bootstrap Forecast Error Variance Decompositions 
At 24 quarter Horizon 
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Notes: Bootstraps are from Monte-Carlo integration with 1000 repetitions. Lag length of 
VAR for Japan is one. 
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GENERAL CONCLUSIONS 

Long memory in volatility of stock market returns and other financial variables has been one 

of the prolific areas of research in finance and economics in recent years. Regime switching 

processes have been proposed to mimic the persistence observed in the volatility of the series. In 

Chapter I. I showed through a Monte-Carlo simulation that regime switching processes may carry 

features of a long memory process. The long memory behaviour can be approximated by either 

very low transition probabilities in a Markov regime switching ARCH model or through 

increasing the expected waiting time in a semi-Markov process. The long memory tests I use 

establish a relationship between the regime switching models in a small finite system and the 

regime switching models where the number of switches is infinite but countable. The size and 

power of the MRR and GPH tests validate the additional persistence introduced by switching 

across different volatility regimes. The approach in Chapter I shares common features with Hsu 

( 1997) and Liu (2000) and supports their arguments and conclusions using a simulation study. 

In Chapter II, and Chapter III, I re-examine the structural modeling of real exchange rates 

via two separate methods. The common analysis method in the literature is to use differenced 

variables in the VAR system. Such an approach has its serious deficiencies, as it does not address 

any possible cointegration effects between the variables. Such effects are either not modeled 

through choice of proper non-cointegrated variables or are simply ignored. The common trends 

approach allow the modeler to incorporate possible cointegration effects into the structural 

estimation. Although common trends decomposition have found common use in other disciplines 

of economics, it has not yet been fully drawn up on the international finance literature, real 

exchange rates in particular. I use data from G-7 countries in the post-Bretton Woods period 

similar to the seminal paper by Clarida and Gali (1995) with the same long run restrictions 

imposed on the system. I identify serious cointegration effects by a choice of a slightly different 

data with an extended set of countries and the decompositions do not lend themselves easily to be 

interpreted as productivity, demand and nominal shocks. The impulse responses have incorrect 

signs in the long run in contrast to the common findings in the literature and Clarida and Gali 

(1995) model. Only for the case of Canada we have correct decomposition, that is mainly due to 

it being the only country satisfying no cointegration assumption in the trivariate system. I also 

address the significance of the impulse responses and cannot find significance for most shocks. 

The lag lengths selected by various criteria in the structural VAR have serious effects on the 
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impulse responses, at times reversing even the signs in the short and the long run. I show that 

such perverse sign effects are mainly due to non-modeled cointegration in the VAR. 

Chapter UI takes the structural modeling of real exchange rates one step further by 

accounting for cointegration. The structural vector error correction modeling of real exchange 

rates is carried out within the same time frame as in Chapter II, but with slightly different 

variables. The four variables are real GDP, real exchange rate, real money balances, and the 

nominal interest rate. The money demand relationship serves as the cointegrating vector. With 

one cointegrating vector and four variables Chapter II identifies permanent productivity, demand 

and nominal shocks with the same long-run restrictions used in Chapter II. The new structural 

model with the cointegration effects corrects for the perverse signs in the impulse responses. The 

perverse sign of the real exchange rate due to a supply shock observed in common structural 

VAR studies is also examined and it is established that for most cases the real exchange rate 

depreciates in response to a positive productivity shock. The findings in Chapter III confirms my 

previous observation that the perverse and changing signs of the impulse responses are mainly 

due to sensitivity of the VAR and cointegration tests to various choice of lags. Lags that may 

enhance the cointegration effects lead to sign changes in the impulse responses. By comparing 

variance decompositions both from a structural VAR and a structural VEC model. I show that the 

relative importance of permanent and nominal shocks do not change much regardless of the 

decomposition procedure used. This serves to bolster S arte (1997)'s argument that it is the 

identifying restrictions that are at the heart of differing relative importance of shocks in structural 

decompositions. 



www.manaraa.com

109 

ACKNOWLEDGEMENTS 

I benefited from numerous sources in the completion of this dissertation. I would like to 

express my sincere thanks to my major professor Dr. Barry Falk for his guidance through my 

studies. He has always been prompt to respond to my questions and been available at all times. 

I should also mention Jay Breidt, my major professor through my Masters degree in 

Statistics at Iowa State University who has provided me with research ideas for the first chapter 

of my dissertation. Chapter I of the dissertation is an extended version of my creative component 

written during my graduate studies in the Statistics department. 

The final dissertation would not be complete without valuable criticisms I received 

during my presentations at various conferences. In order with the chapters of the dissertation. I 

gratefully acknowledge comments from participants at the 2000 Annual Meeting of the Iowa 

Chapter of the American Statistical Association Meetings, Indianola, Iowa; 2001 Annual 

Missouri Economics Conference. Columbia, Missouri, and 2002 Midwest Economics Association 

Meetings. Chicago, Illinois. 

Special thanks to my parents for their understanding and unconditional support 

throughout all stages of this hard but equally rewarding years at Iowa State. 

I finally thank Dr.Joydeep Bhattacharya, Dr. Helle Bunzel, Dr. Mervyn Marasinghe, and 

Dr. Peter Orazem for serving in my dissertation committee. 


	2002
	Three essays on long memory tests for persistence in volatility and structural vector autoregression modeling of real exchange rates
	Osman Kubilay Gursel
	Recommended Citation


	tmp.1410195246.pdf.3QXvr

